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I. INTRODUCTION

IN MANY real-life applications, a decision maker (DM) has
several conflicting objectives to consider and wants to deter-

mine an optimal tradeoff among them. These applications can
be modeled as multiobjective optimization problems (MOPs).
A Pareto-optimal solution to an MOP is a candidate for the
optimal tradeoff [1]. An MOP may have many, even an infinite
number of Pareto-optimal solutions. The Pareto set (PS)/Pareto
front (PF) is the set of all the Pareto-optimal solutions in the
decision/objective space. Without the DM’s preference infor-
mation, all the Pareto-optimal solutions are equally good. The
DM often wants to have a good approximation to the PS and/or
the PF available to further investigate the problem and to make
his final decision [1].

Many evolutionary algorithms (EAs) have been developed
for MOPs [2]–[9]. The major advantage of these multiobjective
EAs (MOEAs) over other methods is that they work with a
population of candidate solutions and thus can produce a set of
Pareto-optimal solutions to approximate the PF in a single run.

Reactive search optimization (RSO) [10], [11], i.e., the
“learning while optimizing” principle, has been widely ac-
cepted as a basic design principle in metaheuristics. RSO
each ant, in a probabilistic way, constructs a solution based on
the pheromone matrix and heuristic information matrix; then,
the pheromone values are updated by these newly constructed
solutions. Encouraged by the successful applications of ACO
in single-objective optimization, several multiobjective ACOs
(mACOs) have been developed in recent years [18]–[24]. In the
design of an mACO, the following two related ingredients must
be carefully considered.

• Pheromone and heuristic information matrices: Be-
cause the goal of mACOs is to approximate the whole PF,
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pheromone and heuristic information matrices should
contain information about the possible locations of all
the Pareto-optimal solutions instead of a single solution.
Only one pheromone matrix and one heuristic information
matrix may not serve this purpose very well, particularly
when the distribution of the Pareto-optimal solutions is
complicated. For this reason, most mACOs use multiple
pheromone and heuristic information matrices [19], [20].
Often, each individual objective has one pheromone ma-
trix and one heuristic information matrix, which can reflect
the merit of each solution component for this particular
objective [19], [20]. However, one pheromone matrix and
one heuristic information matrix per objective are not
enough for dealing with some hard MOPs. To develop
an efficient mACO for approximating the whole PF, it is
necessary to develop an effective way to use a reasonable
number of pheromone and heuristic information matrices
for recording useful information.

• Solution construction: mACOs should be able to gen-
erate a set of diverse new solutions at each generation
so that they can approximate the whole PF [24]. To this
end, different ants should use different combinations of
pheromone and heuristic information matrices in the solu-
tion construction phase, therefore focusing onto different
parts of the PF. How to combine pheromone and heuristic
information has not been fully explored yet.

MOEA based on decomposition (MOEA/D) [25] is a re-
cent MOEA framework. Similar to multiobjective genetic local
search (MOGLS) [26]–[28], multiple single-objective Pareto
sampling [29], and adapting weighted aggregation [30], it is
based on conventional aggregation approaches: an MOP is
decomposed into a number of single-objective optimization
subproblems. The objective of each subproblem is a (linearly or
nonlinearly) weighted aggregation of the individual objectives.
Neighborhood relations among these subproblems are defined
based on the distances among their aggregation weight vectors.
Each subproblem is optimized in MOEA/D by using informa-
tion mainly from its neighboring subproblems. The MOEA/D
framework has been studied and used for dealing with a number
of multiobjective problems [31]–[46].

This paper proposes an mACO in the MOEA/D framework,
which is called MOEA/D-ACO. In designing this algorithm,
special attention has been paid to the two issues aforemen-
tioned. In MOEA/D-ACO, each ant is responsible for one
single-objective subproblem, and it targets a particular point
in the PF. An ant has its own heuristic information matrix for
holding its a priori information about its subproblem. Based
on the neighborhood structure of the subproblems, the ants are
divided into groups. Each group is to approximate a particular
part of the PF. The ants in the same group share one pheromone
matrix, which contains learned information about the position
of their Pareto subregion. During the search, each ant records a
current solution to its subproblem. To generate a new solution,
an ant first builds one matrix by combining information from its
own heuristic information matrix, the pheromone matrix of its
group, and its current solution. The matrix built in this way is
then used to guide its solution construction. In this manner, the

constructed solution is more likely to be a good solution to the
ant’s subproblem. The pheromone matrix of each ant group is
updated at each generation by using information extracted from
the new solutions constructed by the ants in its group. Based
on its own objective, each individual ant updates its current
solution if it finds a better one from its neighborhood. This
enables collaboration among different ant groups in MOEA/D-
ACO since two neighbors may not be in the same group.

The BicriterionAnt with region update (BicriterionAnt) [24]
is probably the first mACO in which different ant groups
target different subregions of the PF. The major differences
between it and our proposal are as follows. First, each ant in
MOEA/D-ACO records a solution to its subproblem, and this
solution makes direct contribution to its solution construction,
which in a sense, combines the location information of an
individual solution and global statistical information, whereas
BicriterionAnt has no such mechanism. Second, MOEA/D-
ACO relies on neighborhood relations among individual ants
for implementing collaboration among different ant groups. In
contrast, different ant groups in BicriterionAnt collaborate via
sharing a global solution pool. Finally, an ant in MOEA/D-ACO
only updates its group’s pheromone matrix, which is very easy
to implement and does not involve heavy computational over-
head, In BicriterionAnt, ant i updates the pheromone matrix of
group k if ant i has found a nondominated solution in the range
that group k is responsible for. Therefore, at each generation,
BicriterionAnt has to decide which solutions are in the range of
a particular ant group, which makes it hard to generalize to the
case of more than two objectives [24].

The rest of this paper is organized as follows. Section II
introduces multiobjective optimization, two test problems,
and basic decomposition approaches used in this paper.
Section III presents MOEA/D-ACO. Sections IV and V com-
pare MOEA/D-ACO with other algorithms and study the be-
havior of MOEA/D-ACO. Section VI concludes the paper and
outlines some avenues for future research.

II. MULTIOBJECTIVE OPTIMIZATION

This section presents the general MOP definition and two
special problems used in our experiments.

A. Problem Definition

A general MOP can be stated as follows:

minimize F (x) = (f1(x), . . . , fm(x))

subject to x ∈ Ω (1)

where Ω is the decision (variable) space, F : Ω → Rm consists
of m real-valued objective functions, and Rm is called the
objective space. The attainable objective set is defined as set
{F (x)|x ∈ Ω}.

Let u, v ∈ Rm, u is said to dominate v if and only if ui ≤ vi
for every i ∈ {1, . . . ,m} and uj < vj for at least one index
j ∈ {1, . . . ,m}.1 Point x∗ ∈ Ω is Pareto optimal if there is

1This definition of domination is for minimization. All the inequalities
should be reversed if the goal is to maximize the objectives in (1).
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no point x ∈ Ω so that F (x) dominates F (x∗). F (x∗) is then
called a Pareto-optimal (objective) vector. In other words, any
improvement in one objective of a Pareto-optimal point must
lead to deterioration to at least another objective. The set of all
the Pareto-optimal points is called the PS, and the set of all the
Pareto-optimal objective vectors is called the PF [1].

The following two MOPs are used in this paper as bench-
marks.

1) MOKP: Given a set of n items and a set of m knapsacks,
the multiobjective 0–1 knapsack problem (MOKP) can be
stated as

maximize fi(x) =

n∑
j=1

pi,jxj , i = 1, . . . ,m

subject to
n∑

j=1

wi,jxj ≤ ci, i = 1, . . . ,m

x = (x1, . . . , xn) ∈ {0, 1}n (2)

where pi,j ≥ 0 is the profit of item j in knapsack i, wi,j ≥ 0
is the weight of item j in knapsack i, and ci is the capacity of
knapsack i. xi = 1 means that item i is selected and put into all
knapsacks.

The MOKP is NP-hard and can model a variety of applica-
tions in resource allocation. A set of nine test instances of the
given problem have been proposed in [3] and widely used in
testing multiobjective heuristics.

2) MTSP: Given a set of n cities and m symmetric matrices
(cij,k)n×n, i = 1, . . . ,m, where cij,k > 0 can be interpreted as
the ith cost of traveling between cities j and k. The problem is
as follows:

minimize fi(x) =

n−1∑
j=1

cixj ,xj+1
+ cix1,xn

i = 1, . . . ,m (3)

where x is a permutation of n cities, representing a tour
that visits each city exactly once. The multiobjective traveling
salesman problem (MTSP) is also NP-hard. In real-world appli-
cations, the different costs can be length, gasoline consumption,
time, risk, etc.

B. MOP Decomposition

Several approaches have been proposed for decomposing an
MOP into a number of single-objective optimization subprob-
lems [1], [47]–[49]. In the following, we introduce two most
commonly used approaches.

1) Weighted Sum Approach: Let λ = (λ1, . . . , λm) be a
weight vector, i.e.,

∑m
i=1 λi = 1 and λi ≥ 0 for all i =

1, . . . ,m. Then, the optimal solutions to the following single-
optimization problems:2

minimize gws(x|λ) =
m∑
i=1

λifi(x)

subject to x ∈ Ω (4)

2In the case of maximization, “minimize” should be replaced by “maximize.”

are Pareto optimal to (1) if the PF of (1) is convex, where we use
gws(x|λ) to emphasize that λ is a weight vector in this objective
function, whereas x is the variable to be optimized. However,
when the PF is not convex, the weighted sum approach may not
be able to find some Pareto-optimal solutions.

2) Tchebycheff Approach: The single-objective functions to
be minimized are in the following form:

gte(x|λ) = max
1≤i≤m

{λi (fi(x)− z∗i )} (5)

where z∗ = (z∗1, . . . , z
∗
m) is the reference point, i.e.,3

z∗i = min
x∈Ω

fi(x) (6)

for each i = 1, . . . ,m. Under some mild condition [1], for each
Pareto-optimal point x∗, there exists a weight vector λ such that
x∗ is the optimal solution of (5), and each optimal solution of
(5) is Pareto-optimal to (1).

To obtain a set of different Pareto-optimal solutions of (1),
one can solve a set of single-objective optimization problems
with different weight vectors defined by (4) and (5) or any other
decomposition approaches.

III. NEW PROPOSAL: MOEA/D-ACO

This section describes the MOEA/D-ACO and its implemen-
tations for the MOKP and MTSP.

A. Algorithmic Framework

MOEA/D-ACO first decomposes the MOP into N single-
objective subproblems by choosing N weight vectors
λ1, . . . , λN . Subproblem i is associated with weight vector λi,
and its objective function is denoted as g(x|λi). MOEA/D-ACO
employs N ants for solving these single-objective subproblems.
Ant i is responsible for subproblem i.

Because g(x|λ) is a continuous function of λ, two subprob-
lems are likely to have similar solutions if their weight vectors
are close. Motivated by this observation, MOEA/D-ACO has
the following concept.

• Neighborhood: The neighborhood B(i) of ant i contains
T ants whose subproblem’s weight vectors are the T
closest to λi among all the N weight vectors. We always
assume that i ∈ B(i); in other words, ant i is its own
neighbor.

In addition, MOEA/D-ACO introduces the group concept.
• Group: The N ants are divided into K groups by clus-

tering their corresponding weight vectors. Each group is
intended to approximate a small range of the PF.

Fig. 1 illustrates the ideas of decomposition, neighborhoods,
and groups in MOEA/D-ACO. To the best of our knowledge,
the group concept was first used in BicriterionAnt [24] for
biobjective optimization. BicriterionAnt is a Pareto-dominance
based method, whereas MOEA/D-ACO adopts a decomposi-
tion approach.

3In the case of maximization, z∗i = maxx∈Ω fi(x).
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Fig. 1. In this illustrative example, the number of objectives (i.e., m) is 2, the number of ants (i.e., N ) is 14, the number of groups (i.e., K) is 2, and
the neighborhood size (i.e., T ) is 5, The MOP is decomposed into 14 single-objective subproblems. Ant i is responsible for finding the optimal solution of
subproblem i. Group 1 contains ant 1, 2, . . ., 7, and Group 2 contains ant 8, 9, . . ., 14. Each ant has five neighbors (including itself). As shown in this figure, the
neighbors of ant 6 are ants 4, 5, 6, 7, and 8.

At each generation, MOEA/D-ACO with N ants maintains
the following:

• N solutions x1, . . . , xN ∈ Ω, where xi is the current solu-
tion to subproblem i;

• F 1, . . . , FN , where F i is the F -value of xi, i.e., F i =
F (xi);

• τ1, . . . , τK , where τ j is the current pheromone matrix for
group j, storing its learned knowledge about the subregion
of the PF that it aims at approximating;

• η1, . . . , ηN , where ηi is the heuristic information ma-
trix for subproblem i, which is predetermined before the
search;

• EP , which is the external archive containing all the non-
dominated solutions found so far.

MOEA/D-ACO works as follows:

Step 0 Initialization: For i = 1, . . . , N , generate initial so-
lution xi to subproblem i and set F i = F (xi). For i =
1, . . . , N , initialize ηi, the heuristic information matrix
to subproblem i. For j = 1, . . . ,K, initialize pheromone
information matrix τ j for group j. Initialize EP as the set
of all the nondominated vectors in {F 1, . . . , FN}.

Step 1 Solution Construction: For each i = 1, . . . , N , ant i
constructs a new solution yi by using a probabilistic rule to
choose solution components. The rule is a function of xi,
ηi, and τ j , where ant i is in group j. Compute F (yi).

Step 2 Update of EP : For each i = 1, . . . , N , if no vector in
EP dominates F (yi), add F (yi) to EP and remove from
EP all the vectors dominated by F (yi).

Step 3 Termination: If a problem-specific stopping condition
is met, stop and output EP .

Step 4 Update of Pheromone Matrices: For each j =
1, . . . ,K, update pheromone matrix τ j by using informa-
tion extracted from those new solutions that were con-
structed by ants in group j in Step 1 and have just been
added to EP in Step 2.

Step 5 Update of xi: For i = 1, . . . , N , ant i finds y, i.e., the
solution with the smallest g(·|λi) value among all the new
solutions that were constructed by its neighbors and have
not been used to replace any other old solutions; replace xi

by y if g(y|λi) < g(xi|λi). Go to Step 1.
At each generation, each ant constructs a solution in Step 1.

These newly constructed solutions update the external archive
in Step 2. An ant updates the pheromone matrix of its group
in Step 4 if it has found a new nondominated solution. In
Step 5, each ant updates its current solution if there is a solution
that: 1) is better than its current solution; 2) has not been used
for updating other old solutions; and 3) was generated by its
neighbors. Step 3 is termination. MOEA/D-ACO is an anytime
algorithm; it is always able to return complete and feasible
solutions.

In the above top-level description, the details of some steps
are problem specific. In the following, we take the MOKP and
MTSP as examples to show how these steps can be imple-
mented. We would like to point out that our implementation
is not unique. There are many possible ways to instantiate the
above framework.

B. MOEA/D-ACO for the MOKP

1) Basic Setting:
• Setting of N and λ1, . . . , λN : This is controlled by pa-

rameter H . More precisely, λ1, . . . , λN are all the weight
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vectors in which each individual weight component takes
a value from {

0

H
,
1

H
, . . . ,

H

H

}
.

Therefore, the number of the weight vectors is

N = Cm−1
H+m−1. (7)

• Setting of Group: K representative weight vectors
ξ1, . . . , ξK are generated by using the same method as
above with a smaller value of H . Then, we cluster
λ1, . . . , λN into K groups so that ξi is the closest repre-
sentative vector, in terms of Euclidean distance, to all the
weight vectors in group i.

• Setting of Neighborhood: The Euclidean distance is used
to compute the distance between any two weight vectors.

• Decomposition Approach: Both the weighted sum and
Tchebycheff approaches are used in this paper. In the
Tchebycheff approach, the reference point z∗ is substituted
by z = (z1, . . . , zm), where zi is the best value of function
fi found so far.

• The Data Structure of Pheromone and Heuristic In-
formation Matrices: Because each candidate solution to
the MOKP is an n-Dimensional 0–1 vector, we represent
pheromone and heuristic information matrices by using
n-dimensional real-valued vectors. More precisely, the
pheromone matrix for group j is

τ j =
(
τ j1 , . . . , τ

j
n

)

where τ jk can be interpreted as a figure of merit, which is
learned from the previous search, to measure the benefit of
xk = 1 in a solution for the task of group j.

The heuristic information matrix for ant i is

ηi =
(
ηi1, . . . , η

i
n

)
where ηik is to measure the desirability, learned from the
domain knowledge before the search, that xk = 1 in a
solution for subproblem i.

2) Initialization:

• The value of the kth element in ηi, the heuristic informa-
tion matrix for ant i, is set as

ηik =

∑m
l=1 λ

i
lpl,k∑m

l=1 γ
i
lwl,k

(8)

where γi
l is the shadow price of constraint l in the linear

programming relaxation of (4) with weight vector λi. ηik
is the pseudoutility ratio [50], which has been used as a
heuristic information value in [51].

• All the pheromone values are initialized to be the same
large value. In our experiments, we have

τ jk = 1 (9)

for all j = 1, . . . ,K and k = 1, . . . , n. The motivation is
to encourage the search to focus on exploration at its early
stage.

3) Solution Construction: Assume that ant i is in group
j and that its current solution is xi = (xi

1, . . . , x
i
n). In

Step 1 of MOEA/D-ACO, ant i constructs a new solution yi =
(yi1, . . . , y

i
n) as follows.

1. For k = 1, . . . , n, set

φk =
(
τ jk +Δ× xi

k

)α (
ηik
)β

(10)

where Δ, α, and β > 0 are three control parameters. φk

represents the desirability that yik = 1 in yi (i.e., item k is
selected) for subproblem i.

2. Initialize yi = (0, . . . , 0) (i.e., the knapsack is empty). Set
I = {1, . . . , n}.

Do while I �= ∅:
2.1 For each s ∈ I , remove s from I if setting yis = 1 (i.e.,

adding s to the knapsack) will make yi infeasible.
2.2 If I = ∅, return yi.
2.3 Generate a uniformly random number from (0, 1). If

it is smaller than a control parameter r, set s to be
the index in I with the largest φ value; otherwise,
select one index s randomly from I according to the
following probability by the roulette wheel selection:

φs∑
k∈I φk

.

2.4 Remove s from I and set yis = 1.
In (10), τ jk is the pheromone trail of item k shared by all

the ants in group j. xi
k = 1 means that item k is selected in

the current solution of subproblem i. xi
k is private to ant i.

Thus, τ jk +Δ× xi
k is a combination of the group and private

knowledge. This combination can be regarded as a private
pheromone trail of item k for ant i. As in other ACO algorithms,
α and β are for balancing the contributions from the pheromone
trails and heuristic information values.

In Step 2.3, the selection of s follows the so-called pseudo-
random proportional rule [13]. The control parameter r is used
to balance exploration and exploitation. If the generated random
number is smaller than r, the ant does exploitation and selects
the item with the largest desirability; otherwise, it conducts
random exploration biased toward items with large desirability.

4) Update of Pheromone Matrices: Let Π be the set of all
the new solutions:

• that were constructed by the ants in group j in Step 1 of
the current iteration;

• that were just added to EP in Step 2;
• in which xk = 1.
τ jk , i.e., the pheromone trail value of item k for group j, is

updated as follows:

τ jk := ρτ jk +
∑
x∈Π

1∑m
i=1

∑n
j=1 pij − g(x|λj)

(11)

where ρ is the persistence rate of the old pheromone trails. With
this update scheme, pheromone matrix τ j stores some statistical
information of good solutions found so far for the task of
group j.

To avoid abnormally large or small pheromone trails, the
upper and lower bounds of pheromone values τmax and
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τmin are used to limit the range of pheromone trails in our
implementation.

Following the max–min ant system [14], MOEA/D-ACO, at
each generation, updates τmax as follows:

τmax =
B + 1

(1− ρ)
(∑m

i=1

∑n
j=1 pij − gmax

) (12)

where B is the number of nondominated solutions found at the
current iteration, and gmax is the largest value obtained for the
objectives functions of all the N subproblems. τmin is always
set as

τmin = ετmax (13)

where 0 < ε < 1 is a control parameter. Then, for τ jk obtained
in (11), reset τ jk = τmin if τ jk < τmin, and reset τ jk = τmax if
τ jk > τmax.

C. MOEA/D-ACO for the MTSP

1) Basic Setting: It is the same as that for the MOKP, except
the data structures of pheromone and heuristic information
matrices, and solutions are as follows.

• Each group j has pheromone trail τ jk, l for a link between
two different cities k and l.

• Each ant i has a heuristic information value ηik, l for a link
between cities k and l.

• Each individual solution x is a tour represented by permu-
tation.

2) Initialization: Heuristic information values are initial-
ized as

ηik, l =
1∑m

j=1 λ
i
jc

j
k, l

. (14)

Similar to the implementation for the MOKP, τki,j is initialized
to 1.

3) Solution Construction: Assume that ant i is in group j,
and its full-scale current solution xi = (xi

1, . . . , x
i
n). In Step 1

of MOEA/D-ACO, ant i constructs its new solution yi =
(yi1, . . . , y

i
n) as follows.

1. For k, l = 1, . . . , n, set

φk, l =
[
τ ik, l +Δ× In

(
xi, (k, l)

)]α (
ηik, l

)β
(15)

where Δ, α, and β > 0 are three control parameters. φk, l

represents the attractiveness of the link between cities k
and l to ant i. The indicator function In(xi, (k, l)) is equal
to 1 if link (k, l) is in tour xi or 0 if otherwise.

2. Ant i first randomly selects a city as its starting point and then
builds its tour city by city. Suppose that its current position
is l and it has not completed its tour. It chooses city k to
visit next from C, i.e., the set of the cities not visited so far,
as follows:

Do while there are unvisited cities:
2.1 Generate a uniformly random number from (0, 1). If

it is smaller than a control parameter r, choose k to
be the city in C with the largest φ value; otherwise,

select k randomly from C according to the following
probability by the roulette wheel selection:

φk, l∑
s∈C φs, l

.

2.2 If the ant has visited all the cities, return its tour.

4) Update of Pheromone Matrices: Let Π be the set of all
the new solutions that:

• were constructed by the ants in group j in Step 1 of the
current iteration;

• were just added to EP in Step 2;
• contain the link between cities k and l.

τ jk, l, i.e., the pheromone trail value of link (k, l) for group j,
is updated as follows:

τ jk, l := ρτ jk, l +
∑
x∈Π

1

g(x|λj)
(16)

where ρ is the persistence rate of the old pheromone trails. As
in the implementation for the MOKP, τmax and τmin are used to
limit the range of pheromone trails in our implementation. At
each generation, τmax is set:

τmax =
B + 1

(1− ρ)gmin
(17)

where B is the number of nondominated solutions found at the
current iteration, and gmin is the smallest value obtained for the
objectives functions of all the N subproblems. τmin is

τmin = ετmax (18)

where 0 < ε < 1 is a control parameter. Then, for τ jk, l obtained

in (16), reset τ jk, l = τmin if τ jk, l < τmin, and τ jk, l = τmax if

τ jk, l > τmax.

IV. COMPARISON WITH MOEA/D-GA ON THE MOKP

In [25], an implementation of MOEA/D with conventional
genetic operators and local search (denoted by MOEA/D-GA
in the following) is proposed for the MOKP. The crossover op-
erator used is the one-point crossover and the mutation operator
mutates each position of a solution with a very low probability.
The local search used in MOEA/D-GA was developed by
Jaszkiewicz [28].

The major reasons for this comparison are twofold: First,
MOEA/D-GA outperforms some other popular and efficient
EAs, such as MOGLS on the MOKP [28], and second, both
MOEA/D-GA and MOEA/D-ACO use the MOEA/D frame-
work. This comparison is necessary for studying the effect of
using ACO in MOEA/D.

A. Experimental Setup

The nine instances from [3] are used in our experiments.
The parameter setting in MOEA/D-GA is the same as in [25],

which demonstrated that the weighted sum approach performs
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TABLE I
THE SETTINGS OF THE NUMBER OF ANTS, N(H), AND THE NUMBER OF

GROUPS, K(H), IN MOEA/D-ACO FOR THE MOKP

much better than the Tchebycheff approach in MOEA/D-GA
for the MOKP. In our comparison, MOEA/D-GA uses the
weighted sum approach as its decomposition approach.

To make a fair comparison, the parameters with respect to the
MOEA/D framework in MOEA/D-ACO are the same as those
in MOEA/D-GA. Both the weighted sum and Tchebycheff
approaches are tested in MOEA/D-ACO. The settings of the
number of ants and the number of groups for all instances are
given in Table I. The other parameters are set as follows.

• T = 10.
• α = 1.
• β = 10.
• ρ = 0.95.
• r = 0.9.
• ε = (1/2n).
• Δ = 0.05× τmax.
Both algorithms stop after 300 generations. All the experi-

ments have been carried out on the same computer (a Pentium IV
3-GHz CPU and 2 GB RAM). The programming language is
C++. All the statistics are based on 30 independent runs.

B. Performance Metric

The inverted generational distance (IGD) [25] is used in
assessing the performance of the algorithms in our experimental
studies.

Let P ∗ be a set of uniformly distributed points in the objec-
tive space along the PF. Let P be an approximation to the PF,
the IGD from P ∗ to P is defined as

D(P ∗, P ) =

∑
v∈P∗ d(v, P )

|P ∗|

where d(v, P ) is the minimum Euclidean distance between
v and the points in P . If P ∗ is large enough to represent
the PF very well, D(P ∗, P ) measures both the diversity and
convergence of P . To have a low value of D(P ∗, P ), P must be
very close to the PF and cannot miss any part of the whole PF.
We chose the upper approximations obtained by Jaszkiewicz
[28] as P ∗ in our experiments on the MOKP.

C. Comparison Results

Table II presents the mean and standard deviation of the IGD
values of the final approximations obtained by each algorithm

TABLE II
THE IGD STATISTICS OF THE FINAL APPROXIMATIONS OBTAINED BY

MOEA/D-ACOW , MOEA/D-ACOT , AND MOEA/D-GA

TABLE III
AVERAGE CPU TIME (IN SECONDS) USED BY MOEA/D-ACOW ,

MOEA/D-ACOT , AND MOEA/D-GA

among 30 runs for each test instance. Table III shows the
average CPU time used by each algorithm. Fig. 2 plots the
distribution of the final approximation with the lowest IGD
value among 30 runs of each algorithm for each biobjective
test instance. MOEA/D-ACOW and MOEA/D-ACOT repre-
sent MOEA/D-ACO with the weighted sum approach and
the Tchebycheff approach, respectively. Figs. 3–5 show the
evolution of the mean of the IGD value with the number of
generations.

It is clear from Table II that the final approximations obtained
by both variants of MOEA/D-ACO are much better than those
obtained by MOEA/D-GA in terms of the IGD metric value
on all the test instances. For example, the average IGD values
in both MOEA/D-ACO variants are about 23%, 22%, and
25% of those obtained by MOEA/D-GA on instances 250-2,
500-3, 750-4, respectively. From these figures, it is also clear
that the differences in the final approximations between two
MOEA/D-ACO variants are very small and therefore difficult
to distinguish visually.

It is evident in Fig. 2 that almost all the final solutions
with the lowest IGD values obtained by MOEA/D-GA are
dominated by those obtained by MOEA/D-ACO variants on
instances 250-2, 500-2, and 750-2. Clearly, the larger the num-
ber of decision variables is, the larger the difference between
MOEA/D-ACO and MOEA/D-GA is. Table III suggests that
both MOEA/D-ACO variants consume more CPU time than
MOEA/D-GA. This should be because the ACO component
involves more computational overhead than crossover and mu-
tation operators. When concentrating the attention on function
evaluations, i.e., the number of candidate solutions visited,
Figs. 3–5 indicate that both MOEA/D-ACO variants are always
more efficient in terms of the number of function evaluations
than MOEA/D-GA in minimizing the IGD values on all the
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Fig. 2. Final approximations with the lowest IGD value among 30 runs obtained by MOEA/D-ACOW , MOEA/D-ACOT , and MOEA/D-GA on instance 250-2,
500-2, and 750-2. In each subplot, the horizontal and longitudinal axes correspond to the first and second objective functions, respectively.

three biobjective test instances. The final IGD values obtained
by MOEA/D-GA are larger than the final IGD values obtained
by MOEA/D-ACO variants.

D. More Discussions

Both MOEA/D-ACO and MOEA/D-GA adopt the same
MOEA/D framework. Therefore, the success of MOEA/D-
ACO should therefore be credited to its ACO part. A distinct
feature of ACO is that it makes good use of the heuristic
information matrices and uses them to guide its solution con-
struction. From (10), β = 0 in MOEA/D-ACO means that the

heuristic information will make no contribution to solution
construction. To investigate the effect of the heuristic infor-
mation matrices on the performance of MOEA/D-ACO, we
have set β = 0 and kept all the other parameters the same as
in Section IV-A, and tested MOEA/D-ACO on all the MOKP
instances. The IGD statistics of 30 independent runs obtained
by MOEA-ACO variants without heuristic information are
presented and compared in Table IV. Clearly, MOEA/D-ACO
variants without heuristic information performs much poorer
than those with heuristic information on all the instances. For
example, on instance 250-2, the average IGD-value obtained
by MOEA/D-ACOW without heuristic information is about
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Fig. 3. Evolution of average IGD values with the number of generations in instance 250-2. In each subplot, the horizontal and longitudinal axes correspond to
the number of generations and the average IGD value, respectively.

Fig. 4. Evolution of average IGD values with the number of generations in instance 500-2. In each subplot, the horizontal and longitudinal axes correspond to
the number of generations and the average IGD value, respectively.

Fig. 5. Evolution of average IGD values with the number of generations in instance 750-2. In each subplot, the horizontal and longitudinal axes correspond to
the number of generations and the average IGD value, respectively.

79 times as large as that obtained with heuristic information.
Comparing the results in Tables II and IV, one can find that
MOEA/D-ACO variants without heuristic information are also
poorer than MOEA/D-GA on all the instances. Thus, one
can claim that the use of heuristic information significantly
improves the performance of MOEA/D-ACO. As it is the
case for most heuristic approaches, ACO is not a black-box
method, it requires intuition and intelligence of designers to be
embodied into the heuristic information matrix for achieving
good performance.

V. COMPARISON WITH BICRITERIONANT ON THE MTSP

BicriterionAnt [24] is one of the best existing mACOs on the
biobjective TSP [19], [22]. As pointed out in the introduction,
BicriterionAnt also uses the group concept. It relies on Pareto
dominance for guiding its search, whereas MOEA/D-ACO
employs decomposition for dealing with MOPs. Both of them
use ACO approaches for constructing new solutions. Therefore,
this comparison should be useful for understanding the benefit
of the decomposition approach.
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TABLE IV
IGD STATISTICS OBTAINED BY MOEA/D-ACO FOR STUDYING THE INFLUENCE OF HEURISTIC INFORMATION

TABLE V
THE IGD STATISTICS OF THE FINAL APPROXIMATIONS OBTAINED BY MOEA/D-ACOW , MOEA/D-ACOT , AND BICRITERIONANT

A. Experimental Setup

The 12 instances from [52] are used in the comparison.
The parameter setting of BicriterionAnt is the same as in

[22]. Specifically, we have the following.

• number of groups = 3.
• number of ant in each group = 8.
• ρ = 0.95.
• α = 1.
• β = 2.
• r = 0.9.

The parameter settings of MOEA/D-ACO are as follows.

• Total number of ants N = 24.
• Number of groups K = 3.
• Neighborhood size T = 10.
• ρ = 0.95.
• α = 1.
• β = 2.
• r = 0.9.
• ε = (1/2n).
• Δ = 0.05× τmax.

In computing the IGD values, P ∗ for each instance is the set
of all the nondominated solutions found by all the runs of all the
algorithms. Both algorithms stop after 3000 generations. There-
fore, they construct the same number of candidate solutions for
each instance. All statistics are based on 30 independent runs.

B. Experimental Results

Table V shows that the IGD values of the final approxima-
tions obtained by both MOEA/D-ACO variants are nearly one
order of magnitude lower than those by BicriterionAnt on all
test instances. However, there is no substantial difference be-
tween two MOEA/D-ACO variants in terms of the IGD value.
In Fig. 6, the quality differences between each MOEA/D-ACO
variant and BicriterionAnt can be visually detected. Clearly, the
final solutions obtained by MOEA/D-ACO variants dominate
almost all the final solutions found by BicriterionAnt. Figs. 7–9
suggest that both MOEA/D-ACO are more efficient in reducing
the IGD values than BicriterionAnt. These experimental results
indicate that the MOEA/D framework does indeed help to
improve the algorithm performance. The major reason could
be that the decomposition strategy makes cooperation among
different ants more efficient than Pareto dominance. It is also
clear in Figs. 7–9 that MOEA/D-ACOT performs better than
MOEA/D-ACOW .

Table VI shows that both MOEA/D-ACO variants require
much less CPU time than BicriterionAnt. This is because
BicriterionAnt needs to compare all the solutions to each other
at each generation, which is very time-consuming.

C. More Discussions

Both MOEA/D-ACO and BicriterionAnt use ACO for solu-
tion construction. Unlike BicriterionAnt, each ant in MOEA/D-
ACO records its current solution and uses it to compute φk in
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Fig. 6. Final approximations with the lowest IGD value among 30 runs obtained by two MOEA/D-ACO variants and BicriterionAnt on instance krode100,
kroab200, and kroab300. In each subplot, the horizontal and longitudinal axes correspond to the first and second objective functions, respectively.

(15) for solution construction. MOEA/D-ACO also uses groups
and neighborhoods to allow ants to exchange information.
Thus, three issues arise naturally.

• What if grouping is not used in MOEA/D-ACO?
• What if the current solution makes no contribution to φk

in (15) in MOEA/D-ACO?
• What if individual ants do not change information with

their neighbors as described in Step 5 in MOEA/D-ACO?

Noting that K = 1 implies that no grouping is used, Δ = 0
means that the current solution makes no contribution, and

T = 1 means that an ant has no neighbor except itself, we tested
MOEA/D-ACO variants in which K = 1, Δ = 0, or T = 1,
whereas the other parameters are the same as in Section V-A.
The experimental results are listed in Tables VII and VIII, from
which we can observe the following.

• Both MOEA/D-ACO variants with grouping (i.e., the
default parameter setting) significantly outperform their
counterparts without grouping. For example, in kroab200,
the IGD value of MOEA/D-ACOW with grouping is about
80% of that obtained without grouping.
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Fig. 7. Evolution of average IGD values with the number of generations in instance krode100. In each subplot, the horizontal and longitudinal axes correspond
to the number of generations and the average IGD value, respectively.

Fig. 8. Evolution of average IGD values with the number of generations in kroab200. In each subplot, the horizontal and longitudinal axes correspond to the
number of generations and the average IGD value, respectively.

Fig. 9. Evolution of average IGD values with the number of generations in kroab300. In each subplot, the horizontal and longitudinal axes correspond to the
number of generations and the average IGD value, respectively.

• Both MOEA/D-ACO variants with the default parame-
ter setting are significantly better than those with Δ =
0 on all the 12 test instances. Taking kroab100 as
an example, the IGD value of MOEA/D-ACOT with
the default parameter setting is about 78% of that ob-
tained without using location information of the current
solutions.

• Both MOEA/D-ACO variants with the default parameter
setting significantly outperform their counterparts with
T = 1 on all test instances.

Therefore, one can claim that grouping, the location informa-
tion of the current solutions, and the neighborhood significantly
improve the algorithm performance. In our experiments, there is
no instance in which these techniques cause any deterioration.

VI. CONCLUSION AND FUTURE RESEARCH ISSUES

Reactive search optimization principle, i.e., “learning while
optimizing,” has been widely used for designing and improving
metaheuristics [11]. ACO is a successful heuristic using this
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TABLE VI
AVERAGE RUNNING TIME (IN SECONDS) CONSUMED BY MOEA/D-ACO AND BICRITERIONANT

TABLE VII
THE IGD STATISTICS OF THE FINAL APPROXIMATIONS OBTAINED BY MOEA/D-ACOW WHEN K = 1, Δ = 0, AND T = 1

TABLE VIII
THE IGD STATISTICS OF THE FINAL APPROXIMATIONS OBTAINED BY MOEA/D-ACOT WHEN K = 1, Δ = 0, AND T = 1

principle. ACO for single-objective optimization represents its
problem specific knowledge as a heuristic information ma-
trix and its knowledge learned from the previous search as a
pheromone matrix. Because the goal of multiobjective opti-
mization is to approximate the PF, instead of a single optimal
solution, generalizing ACO to multiobjective optimization is
not a trivial task.

MOEA/D decomposes an MOP into a number of single-
objective subproblems and optimizes them simultaneously.
Neighborhood relations among these subproblems are defined
and used to make the search efficient and effective. With
the MOEA/D framework, this paper designed an mACO, i.e.,

MOEA/D-ACO. In this proposed algorithm, each ant is respon-
sible for one subproblem. The ants are divided into groups, and
each ant has several neighboring ants. An ant group maintains
a pheromone matrix, and an individual ant has a heuristic
information matrix. During the search, each ant also records
the best solution found so far for its subproblem. To construct
a new solution, an ant combines information from its group’s
pheromone matrix, its own heuristic information matrix and its
current solution.

We conducted extensive experimental results on two paradig-
matic MOPs. The experimental results on the MOKP show
that MOEA/D-ACO outperforms MOEA/D-GA on all the nine
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test instances. Furthermore, the heuristic information matrices
in MOEA/D-ACO make a very significant contribution to its
performance. In other words, MOEA/D-ACO successfully in-
herits the learning and adaptation ability of single-objective
ACO. The comparison of MOEA/D-ACO with BicriterionAnt,
which is a very efficient mACO proposed in the previous
literature, on the biobjective TSP has shown that MOEA/D-
ACO performs much better on all the 12 test instances. We also
studied the effects of grouping, the neighborhood, and the use
of location information of current solutions on the performance
of MOEA/D-ACO.

We believe that our proposed hybrid approach can be ex-
tended in several ways. The future research avenues include the
following.

• The studies of MOEA/D-ACO on other hard or real-world
multiobjective problems. Specific attention should be paid
for how to decompose these MOPs and how to define their
heuristic information and pheromone matrices.

• The investigation of online parameter-tuning and configu-
ration techniques in MOEA/D-ACO. Although the manual
tuning in this paper provided excellent results, it is worth-
while studying automatic tuning techniques based on ma-
chine learning for extending MOEA/D-ACO to different
problems [11], [53].

• The combinations of MOEA/D-ACO with single objective
search techniques. Although MOEA/D framework pro-
vides a very natural framework for using single-objective
search techniques, it is worthwhile studying when and
how single-objective search techniques can be used in
MOEA/D-ACO.

• The use of MOEA/D-ACO in two-phase Pareto search.
A two-phase strategy first generates a set of high-quality
solutions by a search method and then applies Pareto local
search on them to generate approximate Pareto-optimal
solutions [54]. It is very interesting to study how to use
MOEA/D-ACO in the first phase.

• The use of the ideas in MOEA/D-ACO for generating
EDAs to multiobjective optimization. Hybrids of EDAs
with other techniques have been widely studied and used
for single-objective optimization (e.g., in [55] and [56]).
These experiences should be very useful for combining
MOEA/D with EDA.

• The studies of combination of MOEA/D-ACO with the
DM’s preference information. The brain–computer evolu-
tionary multiobjective optimization scheme approximates
a utility function in an interactive manner [57] for reducing
the cognitive burden on the DM. It is very interesting
to study how the DM’s preference can be integrated into
MOEA/D-ACO in such a way.

The C++ source code of MOEA/D-ACO can be downloaded
from Qingfu Zhang’s homepage: http://dces.essex.ac.uk/staff/
qzhang/.
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