Computers & Operations Research III (INRI) IRE-101

journal homepage: www.elsevier.com/locate/cor

Contents lists available at ScienceDirect

Computers & Operations Research

& operations
research

Reactive and dynamic local search for max-clique: Engineering effective building

blocks

Roberto Battiti*, Franco Mascia

Dipartimento di Ingegneria e Scienza dell'Informazione, Universita di Trento, Via Sommarive, 14 - 1-38100 Povo (Trento), Italy

ARTICLE INFO ABSTRACT
This paper presents the results of an ongoing investigation about how different algorithmic building
Keywords: blocks contribute to solving the maximum clique problem. We consider greedy constructions, plateau

Hybrid metaheuristics
Reactive local search
Dynamic local search
Stochastic local search
Algorithm engineering

searches, and more complex schemes based on dynamic penalties and/or prohibitions, in particular the
recently proposed technique of dynamic local search and the previously proposed reactive local search
(RLS). We design a variation of the original RLS algorithm where the role of long-term memory (LTM)
is increased (RLS-LTM). In addition, we consider in detail the effect of the low-level implementation
choices on the CPU time per iteration. We present experimental results on randomly generated graphs

with different statistical properties, showing the crucial effects of the implementation, the robustness of
different techniques, and their empirical scalability.

© 2009 Elsevier Ltd. All rights reserved.

1. Prohibition- and penalty-based methods for maximum clique

The availability of heuristic solution techniques for relevant
combinatorial problems is now large and the scientific and prac-
tical issues arise of tuning, adapting, combining and hybridizing
the different techniques. In hybrid metaheuristics, the potential for
reaching either better average results, or more robust results with
less variability is large, but the task is complex. First of all, if one
naively tries to consider all possible combinations of component and
parameters a combinatorial explosion occurs. Secondly, like in all
scientific challenges, one aims not only at beating the competition
on specific benchmarks, but also at understanding the contribution
of the different parts to the whole and at discriminating the basic
principles for achieving successful hybrids.

The present investigation is focussed on algorithmic components
used to solve the maximum clique (MC) problem in graphs with
state-of-the-art results. In particular it is focussed on combining
methods based on local search with memory-based complements to
achieve a proper balance of intensification and diversification during
the search. The considered paradigms are of (i) using prohibitions to
achieve diversification and avoid small cycles in the search trajec-
tory (limit cycles or the equivalent of “chaotic attractors” in discrete
dynamical systems), (ii) using restarts triggered by events happen-
ing during the search, and (iii) using modifications of the objective
function to influence the trajectory and achieve diversification by

* Corresponding author.
E-mail address: battiti@disi.unitn.it (R. Battiti).

0305-0548/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2009.02.013

modifying the fitness surface instead of reducing the number of ad-
missible (non-prohibited) moves.

In addition, stochastic local search (SLS) engineering methods
are considered to develop efficient implementations of the single
steps of the SLS-based techniques, by considering data structures to
support the choice of the next move and the use of memory during
the search. Let us briefly summarize the considered techniques and
the concentration of this work.

The MC problem in graphs is a paradigmatic combinatorial
optimization problem with relevant applications [13], including
information retrieval, computer vision, and social network anal-
ysis. Recent interest includes computational biochemistry, bio-
informatics and genomics, see, for example [8,11]. The problem is
NP-hard and strong negative results have been shown about its
approximability [9], making it an ideal testbed for search heuristics.
Let G = (V,E) be an undirected graph, V ={1,2,...,n} its vertex set,
E C V x V its edge set, and G(S) = (S,E NS x S) the subgraph induced
by S, where S is a subset of V. A graph G = (V,E) is complete if all its
vertices are pairwise adjacent, i.e., Vi, j € V, (i,j) € E. A clique K is a
subset of V such that G(K) is complete. The MC problem asks for a
clique of maximum cardinality.

Reactive search [4,5,15] advocates the use of machine learning to
automate the parameter tuning process and make it an integral and
fully documented part of the algorithm. Learning is performed on-
line, and therefore task-dependent and local properties of the configu-
ration space can be used. A reactive local search (RLS) algorithm for
the solution of the MC problem is proposed in [3,6]. RLS is based on
local search complemented by a feedback (history-sensitive) scheme
to determine the amount of diversification. The reaction acts on the

Operations Research (2009), doi:10.1016/j.cor.2009.02.013

Please cite this article as: Battiti R, Mascia F. Reactive and dynamic local search for max-clique: Engineering effective building blocks. Computers and

http://www.sciencedirect.com/science/journal/cor
http://www.elsevier.com/locate/cor
mailto:battiti@disi.unitn.it
http://dx.doi.org/10.1016/j.cor.2009.02.013

2 R. Battiti, F. Mascia / Computers & Operations Research 111 (11H1) INR-111

single parameter that decides the temporary prohibition of selected
moves in the neighborhood. The performance obtained in compu-
tational tests appears to be significantly better with respect to all
algorithms tested at the second DIMACS implementation challenge
(1992/1993).1

Recently, a SLS algorithm (DLS-MC) is developed in [14]. It is
based on a clique expansion phase followed by a plateau search after
a MC is encountered. Diversification uses vertex penalties which are
dynamically adjusted during the search, a “forgetting” mechanism
decreasing the penalties is added, and vertex degrees are not con-
sidered in the selection. The authors report a very good performance
on the DIMACS instances after a preliminary extensive optimization
phase to determine the optimal penalty delay (pd) parameter for
each instance. While the number of iterations (additions or deletions
of nodes to the current clique) is in some cases larger than that of
competing techniques, the small complexity of each iteration when
the algorithm is realized through efficient supporting data structures
leads to smaller overall CPU times.

The motivation of this work is threefold. First, we want to inves-
tigate how the different algorithmic building blocks contribute to ef-
fectively solving MC instances corresponding to random graphs with
different statistical properties. In particular, the investigation con-
siders the effects of using the vertex degree information during the
search, starting from simple to more complex techniques. Second,
we want to assess how different implementations of the supporting
data structures affect CPU times. For example, it may be the case that
larger CPU times are caused by using a high-level language imple-
mentation w.r.t. low-level “pointer arithmetic”. Having available the
original software simplified the starting point for this analysis. Third,
the DIMACS benchmark set (developed in 1992) has been around for
more than a decade and there is a growing risk that the desire to
get better and better results on the same benchmark will bias the
search of algorithms in an unnatural way. We therefore decided to
concentrate the experimental part on two classes of random graphs,
chosen to assess the effect of degree variability on the effectiveness
of different techniques. Last but not least, a new algorithmic version
has been developed, RLS or RLS-LTM, which maintains the complete
trajectory in its data structure.

2. Algorithmic building blocks of increasing complexity

In local search algorithms for MC, the basic moves consist of
the addition to or removal of single nodes from the current clique.
A swap of nodes can be trivially decomposed into two separate
moves. The local changes generate a search trajectory X}, the
current clique at different iterations t. Two sets are involved in
the execution of basic moves: the set of the improving neighbors
POSSIBLEADD which contains nodes connected to all the elements
of the clique, and the set of the level neighbors ONEMISSING con-
taining the nodes connected to all but one element of the clique,
see Fig. 1. The various simple building blocks considered are named
following the BasicScheme—CandidateSelection structure. The Basic-
Scheme describes how the greedy expansion and plateau search
strategies are combined, possibly with prohibitions or penalties. The
CandidateSelection specifies whether the vertex degree information
is used during the selection of the next candidate move. If it is used,
there are two possibilities: of using the static node degree in G or the
dynamic degree in the subgraph induced by the POSSIBLEADD set.

2.1. Repeated expansions

The starting point for many schemes is given by the expansion of
a clique after starting from an initial seed vertex. At each iteration

! http://dimacs.rutgers.edu/Challenges/

Fig. 1. Neighborhood of the current clique.

ExP-RAND (maxIterations)
I wterations < 0
while iterations < maxlterations do
C < randomv eV
[EXPAND (C)

ok W

EXPAND (C)
™ while POSSIBLEADD # () do
C + C U random v € POSSIBLEADD
[iterations < iterations + 1

© © N o

Fig. 2. Greedy expansion algorithm.

the next vertex to be added can be chosen from the POSSIBLEADD
set through different levels of “greediness” when one considers the
vertex degrees:

e Exp-Rand. The node is selected at random among the possible
additions. When a MC is encountered one restarts from a random
node. The pseudo-code is shown in Fig. 2.

o Exp-StatDegree. At each iteration, a random node is chosen among
the candidates having the highest degree in G. The EXPAND sub-
routine in Fig. 2 is modified by substituting line 8 with:

e C « CU f{randomv e POSSIBLEADD such that deg¢(v) is
maximum}.

e Exp-DynDegree. In this version, the selection of the candidate is
not based on the degree of the nodes in G, but on the degree in
POSSIBLEADD. This greedy choice will maximize the number of
nodes remaining in POSSIBLEADD after the last addition. Line 8
becomes:

e C <« CU f{random v € POSSIBLEADD s.t. degPOSSIBLEADD(U)
is max}.

2.2. Expansion and plateau search

This algorithm alternates between a greedy expansion and a
plateau phase, choosing between the possible candidate nodes with
different ways to consider the vertex degrees:

o ExpPlat-Rand. During the expansion phase, new vertices are chosen
randomly from POSSIBLEADD and moved to the current clique.
When POSSIBLEADD is empty and therefore no further expansion
is possible, the plateau phase starts. In this phase, a node belonging
to the level neighborhood ONEMISSING is swapped with the only
node not connected to it in the current clique. The plateau phase
does not increment the size of the current clique and it terminates
as soon as there is at least an element in the POSSIBLEADD set, or
if no candidates are available in ONEMISSING. As it is done in [14],
nodes cannot be selected twice in the same plateau phase. In order

Operations Research (2009), doi:10.1016/j.cor.2009.02.013

Please cite this article as: Battiti R, Mascia F. Reactive and dynamic local search for max-clique: Engineering effective building blocks. Computers and

http://dimacs.rutgers.edu/Challenges/
http://dx.doi.org/10.1016/j.cor.2009.02.013

R. Battiti, F. Mascia / Computers & Operations Research 11 (11H1) INR-111 3

1. EXPPLAT-RAND (maxlterations, mazxPlateauSteps)
2. [iterations < 0

3. while iterations < maxIterations do

4. C + randomv €V

5. while POSSIBLEADD # () do

6. EXPAND (C)

7, [PLATEAU (C, maxPlateauSteps)

8. PLATEAU (C, maxPlateauSteps)

9. [count <0

10. | while POSSIBLEADD = () and ONEMISSING # ()
11. and count < mazPlateauSteps do

12. C < C U random v € ONEMISSING

13. remove from C' the node not connected to v
14. iterations < iterations + 2

15. | count < count + 1

Fig. 3. EXPPLAT-RAND. algorithm, alternating between expand and plateau
phases.

to avoid infinite loops, the number of plateau searches is limited to
maxPlateauSteps. Starting from EXP-RAND, the base algorithm is
adapted to deal with the alternation of the two phases, see Fig. 3.
Let us note that, if PLATEAU returns with POSSIBLEADD #¢ then
a new expansion is tried as described in lines 5-7. The iterations
are incremented by 2 during a swap because it is counted as a
deletion followed by an addition.

ExpPlat-StatDegree. This algorithm is a modified version of
EXPPLAT-RAND (Fig. 3) with the static degree selection during
the expansion and the plateau.

ExpPlat-DynDegree. This algorithm is the same of EXPPLAT-
STATDEGREE, apart from the selection based on the dynamic
degree during the expansion phase.

2.3. Algorithms based on penalties or prohibitions

More complex schemes can be obtained by using diversification
strategies to encourage the search trajectories to visit unexplored
regions of the search space. These methods are particularly effective
for “deceptive” instances [7], where the sub-optimal solutions attract
the search trajectories.

o ExpPlatProhibition-Rand. A simple diversification strategy can be
obtained by prohibiting selected moves in the neighborhood. In
detail, after a node is added or deleted from the current clique, the
algorithm prohibits moving it for the next T iterations. Prohibited
nodes cannot be considered among the candidates of expansion
and plateau phases. When all the moves are prohibited a restart
is performed.

DLS-MC. To achieve diversification during the search, penalties are
assigned to vertices of the graph [14]. The algorithm alternates
between expansion and plateau phases. Selection is done by
choosing the best candidate among the set of the nodes in the
neighborhood having minimum penalty.

o When the algorithm starts, the penalty value of every node is
initialized to 0 and when no further expansion or plateau moves
are possible, the penalties of nodes belonging to the clique are
incremented by one. All penalties are decremented by one after
pd restarts, see [14] for additional details and results.

RLS. This algorithm alternates between expansion and plateau
phases, like DLS-MC, but it selects the nodes among the non-
prohibited ones which have the highest degree in POSSIBLEADD.
The prohibition time is adjusted reactively depending on the

search history. In the “history” a fingerprint of each configuration
is saved in a hash table. Restarts are executed only when the al-
gorithm cannot improve the current configuration within a fixed
number of iterations, see [6] for details.

e To allow for a comparison between the different amount of
“greediness” in the node selection, a modification of RLS is in-
troduced (called RLS-StatDegree) which uses the static degree
instead of the dynamic degree selection.

The research presented in this paper considers two kinds of
changes to the original RLS version. The first changes are algorith-
mic and influence the search trajectory, while the second one refers
only to the more efficient implementation of the supporting data
structures, with no effect on the dynamics. The algorithmic changes
are the following ones. In the previous version, the search history
was cleared at each restart, now, in order to allow for a more effi-
cient diversification, the entire search history is kept in memory. To
underline this fact, the new version is called RLS or RLS-LTM. Hav-
ing a longer memory caused the parameter T to explode on some
specific instances characterized by many repeated configuration
during the search. If the prohibition becomes much larger than the
current clique size, after a MC is encountered and one node has to
be extracted from the clique, all other nodes will be forced to leave
the clique before the first node is allowed to enter again. This may
cause spurious oscillations in the clique membership which may
prevent discovering the globally optimal clique. An effective way to
avoid the above problem is to put an upper-bound MAX_T equal to
a proportion of the current estimate of the MC. More specifically,
the upper-bound is set to |CLIQUE]| * 0.5.

3. Computational experiments

The computational experiments, presented in this paper, are on
two classes of random graphs, and are aimed at comparing the dif-
ferent algorithmic building blocks and their impact on average num-
ber of steps required to find the MC, as well as the cost per single
iteration.

To ensure that hard instances are considered in the test, a pre-
liminary study investigates the empirical hardness as a function of
the graph dimension.

3.1. Benchmark graphs

Performance and scalability tests are made on two different
classes of random graphs:

Binomial random graphs. A binomial graph GIL(n, p), belonging to
Gilbert’s model %(n, p), is constructed by starting from n nodes and
adding up to (n(n — 1))/2 undirected edges, independently with
probability 0<p<1. See [2] for generation details.

Preferential attachment model. A graph instance PAT(n,d), of the
preferential attachment model, introduced in [1], is built by starting
from a single node and adding successively the remaining nodes.
The edges of the newly added nodes are connected to d exist-
ing nodes, with preferential attachment to nodes having a higher
degree, i.e., with probability proportional to the number of edges
present between the existing nodes.

In binomial graphs, the degree distribution for the different
nodes will be peaked on the average value, while in the prefer-
ential attachment model the probability that a node is connected
to k other nodes decreases following a power-law i.e., P(k) ~ k=7
with y>1.

In the experiments, the graphs are generated using the NetworkX
library [10], for a number of nodes ranging from 100 to 1500. Because
of the hardness of MC, the optimal solutions of large instances cannot

Operations Research (2009), doi:10.1016/j.cor.2009.02.013

Please cite this article as: Battiti R, Mascia F. Reactive and dynamic local search for max-clique: Engineering effective building blocks. Computers and

http://dx.doi.org/10.1016/j.cor.2009.02.013

R. Battiti, F. Mascia / Computers & Operations Research 111 (11H1) INR-111

4
Table 1
Best empirical maximum cliques in the benchmark graphs.
Nodes GIL (n,0.3) PAT (n,n/3)
100 6 13
200 7 19
300 8 25
400 8 31
500 8 37
600 8 42
700 9 48
800 9 54
900 9 57
1000 9 60
1100 10 64
1200 10 70
1300 10 74
1400 10 79
1500 10 86
g o
+ 8 8 5
1e+05 H et E g
1e+04 5 L8 g o E
5 : Hs e 1 h
© g ‘ Lo
3 1e+03 ¢ ! EB P
2 , B B &5 E Lo
LRI B T L
1e+02 BB S BE et ot
A@H01 i ok =

T T T T T T T T T T T T T T T
100 200 300 400 500 600 700 800 900 1100 1300 1500
number of nodes

Fig. 4. Iterations of EXPPLAT-RAND to find the empirical maximum clique in
GIL(n,0.3). Y axis is logarithmic.

be computed and one must resort to the empirical maximum. The
empirical maximum considered in the experiments is the best clique
that RLS is able to find in 10 runs of 5 million steps each. In no case
DLS-MC with pd equal to 1 is able to find bigger cliques for the same
number of iterations. The sizes of the empirical MC in the various
graphs are listed in Table 1.

The algorithms are tested against our data set, to compute the
distribution function of the iterations needed to find the empirical
maximum. The maximum number of steps per iteration is set to 10
million and each test is repeated on the same graph instance 100
times. For the algorithms having a plateau phase, maxPlateauSteps is
set to 100.

We count as one iteration each add- or drop-move executed on
the clique. DLS-MC code was modified to count the steps in this
manner, to be able to make comparisons with the other algorithms.
The CPU time spent by each iteration is measured on our reference
machine, having one Xeon processor at 3.4 GHz and 6 GB RAM. The
operating system is a Debian GNU/Linux 3.0 with kernel 2.6.15-26-
686-smp. All the algorithms are compiled with g + + compiler with
“-03 -mcpu = pentium4”.

Figs. 4 and 5 summarize with standard box-and-whisker plots the
medians, the quartiles, and the outliers of the iterations by EXPPLAT-
RAND. Fig. 4 shows that there are some instances which are signifi-
cantly harder than others. The sawtooth trend of the plot is due to
the fact that EXPPLAT-RAND needs on average more iterations to
solve instances of the Gilbert model corresponding to the increase of
the expected clique size as listed in Table 1. Instances then become
easier when the number of nodes increases and the MC remains the
same size while the number of optimal cliques increases. This is also

confirmed by all other algorithms considered and explained by the
theoretical results by Matula [12].

The sawtooth behavior is hardly visible as shown in Fig. 5 because
of the different granularity of the cliques dimension with respect to
the graph sizes considered.

Fig. 6 reports the number of iterations to find the empirical MC
in PAT(1100,366) graphs by the most significant techniques consid-
ered in this paper. It can be observed that RLS-LTM achieves the
best results for this class of graphs. Furthermore, the variation in
the number of iterations is smaller, implying a larger robustness of
the technique. Additional results and discussions are presented in
Section 3.3.

3.2. Implementation details and cost per iteration of RLS

The total computational cost for solving a problem is of course
the product of the number of iterations times the cost of each it-
eration. More complex algorithms like RLS risk that the higher cost
per iteration is not compensated by a sufficient reduction in the to-
tal number of iterations. This section is dedicated to exploring this
issue.

The original implementation [6] focussed on the algorithm and
the appropriate data structures but did not optimize low-level im-
plementation details. For example, every time a new configuration
had to be inserted in the table, the memory needed to store the el-
ement was allocated dynamically. The new implementation moved
from these on-demand allocations to the more efficient allocation of
a single bigger chunk of memory; the memory is used as a pool of
available locations to be assigned to the elements when needed.

Moreover, the hash table containing the configurations resolves
key collisions by means of chaining. In order to keep the frequent
access operation as close to a direct access as possible, these chains
have to be kept as short as possible. This has been achieved by
doubling the size of the hash table when the number of elements
inside the table exceeds a specified load factor.

The speedup results are reported in Table 2. They show the im-
provement in the steps per seconds achieved by the new version,
for two random graphs and some representative DIMACS instances.
The number of steps per second is computed by measuring on ev-
ery instance the CPU time spent by the two algorithms to perform
1,000,000 iterations. Let us note that the obtained speedup is sub-
stantial. For example, the improvement for large random graphs in-
creases with the graph dimension reaching a factor of 22 for graphs
with thousand nodes (C4000.5).

Let us now consider a simple model to capture the time spent
by the RLS algorithm on each iteration. Most of the cost is spent on
updating the data structures after each addition or deletion. After
a node deletion the complexity for updating the data structures is
O(degg(v)), degz(v) being the degree of the just moved node v in
the complementary graph G. After a node addition the complexity is
O(dege(v) - [POSSIBLEADD)]), see [6] for more details. Now, because
the algorithm alternates between expansions and plateau moves,
for most of the run |POSSIBLEADD)| oscillates between 0 and 1. We
can therefore make the strong assumption that |POSSIBLEADD]| is
substituted with a small constant. In both cases the dominant factor
is therefore O(degx(v)).

The computational complexity for using the history data structure
can be amortized to a O(1) complexity per iteration. The restart
operation cannot be amortized: its complexity is O(n) but it is not
performed regularly. On the contrary, the number of restarts highly
depends on the search dynamics and on the hardness of the instance.

Under the above assumption we decided to propose an empirical
model for the time per iteration which is linear in the number of
node and the degree:

T(n,degg) = on + Pdegz + 7 (1)

Operations Research (2009), doi:10.1016/j.cor.2009.02.013

Please cite this article as: Battiti R, Mascia F. Reactive and dynamic local search for max-clique: Engineering effective building blocks. Computers and

http://dx.doi.org/10.1016/j.cor.2009.02.013

R. Battiti, F. Mascia / Computers & Operations Research 11 (11H1) INR-111

[}
i o g [} o]
. 2 . L g T 8
g . o I f ! o o
1000 | ° . 5. 1 S
° L8 T 8 1 LT
500 £ o - L
Lo |
s . ‘
£ 200 B : ; — 5
9 o | i ! | | | T i
= 100 - : B : S S R
0 A e
o] ' .
501 & Q e
20| — -
10 T T T T T T T T T T T T T T T
100 200 300 400 500 600 700 800 900 1100 1300 1500

number of nodes

Fig. 5. Iterations of EXPPLAT-RAND to find the empirical maximum clique in PAT(n,n/3). Y axis is logarithmic.

- 8 | 1 ;
1200 | 1 g ! 8]
: i (6]
; -8 | 9
1000 — i ; i e
: | i €] 8
i I
i | Q
., 800 ; : | 8
c : ! |
S | | | 8
S 600 ‘ ! : é
2 :
400 - ? E
1
200 . i
— = =]
[[
O - — —
T T T T T T T
ExpPlat- ExpPlat- ExpPlat- DLS-MC ExpPlat RLS-LTM RLS-LTM-
Rand StatDegree DynDegree (pd=2) Prohibitions— StatDegree
Rand(T=2)

Fig. 6. Iterations to find the empirical maximum clique in PAT(1100,366). Results for the most significant algorithms are reported.

The last simplification is given by substituting the average node
degree instead of the actual degree.

Let us note that the above model is not precise if the size of
the POSSIBLEADD set remains large for a sizable fraction of the it-
erations. For example, this is the case when a large graph is ex-
tremely dense, and the clique is very large. In this case the size of
the POSSIBLEADD set is a non-negligible factor which multiplies
degz(v), impacting significantly the overall algorithm performance.
This happens for the MANN instances in the DIMACS benchmark set
which are not considered when fitting the above model.

The fitted model for our specific testing machine is the following:

T(n,degz) = 0.0010n + 0.0107deg; + 0.0494 (2)

The fit residual standard errors for «, § and 7y are 0.0004, 0.0009
and 0.2765 respectively.

Let us note that the cost for using the history data structure, which
is approximately included in the constant term in the above expres-
sion, becomes rapidly negligible as soon as the graph dimension and
density are not very small. In fact the memory access costs approx-

imately less than 50ns per iteration while the total cost reaches
rapidly tens of microseconds in the above instances.

3.3. Results summary

Table 3 presents the results on two specific instances of ran-
dom graphs: GIL(1100,0.3) and PAT(1100,366). The choice of
GIL(1100,0.3) is determined by the fact that it is empirically the
most difficult instance of our data set, while PAT(1100, 366) is cho-
sen with the same number of nodes. The results are for 100 runs on
10 different instances.

From Table 3, it is clear that algorithms based only on expansions
are not always able to find the MC in the given iteration bound,
especially on hard instances. The plateau phase increases dramatically
the success rate.

Degree consideration is effective in the preferential attach-
ment model, while in Gilbert's graphs, where the nodes tend
to have similar degrees, penalty- or prohibition-based algo-
rithms win. For example, the reduction in iterations achieved by
EXPPLAT-STATDEGREE over EXPPLAT-RAND on PAT(1100,366) is

Operations Research (2009), doi:10.1016/j.cor.2009.02.013

Please cite this article as: Battiti R, Mascia F. Reactive and dynamic local search for max-clique: Engineering effective building blocks. Computers and

http://dx.doi.org/10.1016/j.cor.2009.02.013

6 R. Battiti, F. Mascia / Computers & Operations Research 111 (11H1) INR-111

Table 2
Speed improvement on random graphs and selected DIMACS benchmark instances
of the new RLS implementation.

Instance Steps per second Speedup
RLS [6] RLS-LTM
gilbert_1100_0.3 11 202 107 527 9.6
pa_1100_366 24 839 168 350 6.8
C125.9 371 747 1162 791 3.1
C250.9 281 690 943 396 33
C500.9 165 289 714 286 43
C1000.9 80 451 471 698 5.9
C2000.9 27 285 265 957 9.7
DSJC500_5 43 290 295 858 6.8
DSJC1000_5 17 422 160 000 9.2
C2000.5 5573 78 125 14.0
C4000.5 1537 34 965 22.8
MANN_a27 485 437 909 091 1.9
MANN_a45 293 255 425 532 1.5
MANN_a81 14 286 16 667 1.2
brock200_2 109 769 543 478 5.0
brock200_4 147 493 699 301 4.7
brock400_2 103 413 555 556 5.4
brock400_4 105 374 552 486 5.2
brock800_2 33715 264 550 7.8
brock800_4 33311 262 467 7.9
gen200_p0.9_44 321 543 1 000 000 3.1
gen200_p0.9_55 273 224 943 396 35
gen400_p0.9_55 210 084 800 000 3.8
gen400_p0.9_65 204 499 740 741 3.6
gen400_p0.9_75 205 761 724 638 35
hamming10-4 46 339 316 456 6.8
hamming8-4 113 122 568 182 5.0
keller4 140 647 546 448 3.9
keller5 55 036 296 736 54
keller6 7011 101 626 14.5
p_hat300-1 57 870 308 642 53
p_hat300-2 112 233 558 659 5.0
p_hat300-3 171 821 729 927 4.2
p_hat700-1 21758 168 350 7.7
p_hat700-2 49 358 337 838 6.8
p_hat700-3 88 417 478 469 5.4
p_hat1500-1 7345 85 470 11.6
p_hat1500-2 13 504 184 843 13.7
p_hat1500-3 30 460 282 486 9.3

Some round figures are due to the internal clock resolution.

about 31%. The results are confirmed by a Mann-Whitney U-test
(Wilcoxon rank-sum test) at significance level 0.05: p-value is
3.768 x 101>, On the contrary, algorithms using degree informa-
tion have poorer performances on Gilbert’s graphs, if compared
with their completely random counterparts. For example, EXPPLAT-
STATDEGREE finds the MC in GIL(1100,0.3) only in the 60% of the
runs.

The cost per iteration changes significantly among different in-
stances and it also depends on the directions taken in the search-
space by the algorithms so that simple model like that derived for
RLS is not applicable. For example, the plateau phase does not only
decrease the average number of iterations needed to find the MC, but
also decrease the time spent by each single iteration. With a plateau
phase, in fact, the less frequent restarts have a reduced impact on
the average cost per iteration.

Table 3 shows that EXPPLAT-DYNDEGREE spends less time per
iteration (factor of 1.4) than EXP-DYNDEGREE in PAT(1100, 366). The
results is confirmed by a Mann-Whitney U-test at significance level
0.05: p-value is 1.593 x 10~%. The improvement is even bigger in
GIL(1100,0.3) where degree-based selections are less appropriate. In

this case the factor is 3.8 and is also confirmed by a Mann-Whitney
U-test at significance level 0.05: p-value is 1.649 x 10~%.

In case of dynamic degree selection, the incremental update rou-
tine complexity depends also on the size of the POSSIBLEADD set.
With plateau phases the search is longer and the POSSIBLEADD set
is on average smaller.

RLS, which has a different and less frequent restart policy,
alternates between short expansions and plateaus. Therefore
the POSSIBLEADD set remains on average smaller than in EXP-
DYNDEGREE or EXPPLAT-DYNDEGREE and the cost per iteration is
smaller.

Fig. 7 shows the average CPU time per iteration on Gilbert’s
graphs in log-log scale. The regression lines have a slope of 2.41,
0.92 and 0.95 for EXP-DYNDEGREE RLS and DLS-MC (pd=2), respec-
tively, confirming an approximate cost per iteration of EXPPLAT-
DYNDEGREE growing faster than n%, while RLS cost, even if the
candidate selection is based on the dynamic degree, grows approx-
imately linearly.

The values about the CPU time to reach the estimated optimal
solution listed in Table 3, the CPU time needed on average by RLS-
LTM-STATDEGREE to find the MC in Gilbert’s hard instance is 88%
of the time required by DLS-MC (pd = 4). RLS-STATDEGREE needs
330 ms while DLS-MC 374 ms. This is confirmed by a Mann-Whitney
U-test at significance level 0.05: p-value is 7.365 x 10~°.

For the sake of completeness, Appendix A reports the comparison
between RLS and DLS-MC on the DIMACS benchmark instances.

3.4. Penalties versus prohibitions

As shown in Table 3, DLS-MC is not always able to find the best
clique on PAT graphs while prohibition-based heuristic is always
successful. Our results confirm that the penalty heuristic tends to
be less robust than the prohibition-based heuristic. A significant de-
pendency between DLS-MC performance and the choice of the pd
parameter is also discussed in [14]. Further investigations, summa-
rized in Fig. 8, show the success rate of DLS-MC compared with that
of EXPPLATPROHIBITION-RAND for different values of the pd and
prohibition time parameters. The tests are on all instances of the PAT
graphs of our data set.

EXPPLATPROHIBITION-RAND is always able to find the MC
within 100,000 iterations, while DLS-MC fails for several pd values
even incrementing the maximum number of iterations by a factor
of 10 or 100.

4. Conclusions

The results of the investigation show that a careful implementa-
tion of the data structures considering also operating system services
like memory allocation achieves a significant reduction of the CPU
time per iteration. The implementation of the supporting data struc-
tures of the new version has many improvements: (i) the manage-
ment of the dynamic memory, used for storing the configuration fin-
gerprints in the history, which is not allocated when needed as in the
first version, but rather pre-initialized and shared among the steps of
the actual run; (ii) the usage of a dynamic hash table where the size
is adapted to the load factor; (iii) the substitution of all dynamic al-
locations in the functions with allocations executed at the beginning
and reused throughout the run. Furthermore some algorithmic im-
provements to the original RLS have been introduced leading to the
final RLS-LTM proposal, including algorithmic and implementation
changes. RLS-LTM achieves an order of magnitude difference in CPU
times for graphs of reasonable sizes, and the difference appears to
grow with the problem dimension. This results drastically changes
the overall competitiveness of the RLS technique.

The results of the tests on the two graph classes show clearly that
the plateau search is necessary to find the MC in hard instances and in

Operations Research (2009), doi:10.1016/j.cor.2009.02.013

Please cite this article as: Battiti R, Mascia F. Reactive and dynamic local search for max-clique: Engineering effective building blocks. Computers and

http://dx.doi.org/10.1016/j.cor.2009.02.013

Table 3

R. Battiti, F. Mascia / Computers & Operations Research 11 (11H1) INR-111

Results summary with the medians of the empirical steps distribution, the average time per iteration and the total CPU time to reach a solution when it is reached in all tests.

Algorithm GIL (1100,0.3) PAT (1100, 366)

Iter. us/Iter. CPU (s) Iter. us/Iter. CPU (s)
ExpP-RAND [92%]° 8.90 - [0%]? 3.20 -
EXP-STATDEGREE [0%]? 8.30 - [40%]? 3.10 -
EXP-DYNDEGREE [10%]? 104.00 - [0%]2 103 -
EXPPLAT-RAND 74697 5.80 433 273 3.10 .00084
EXPPLAT-STATDEGREE [60%]? 5.70 - 189 3.10 .00058
EXPPLAT-DYNDEGREE 75577 27.20 2.055 191 7.55 .00144
DLS-MC (pd =2) 75943 5.90 448 423 3.20 .00135
DLS-MC (pd = 4) 63467 5.90 374 [99%]* 3.20 -
DLS-MC (pd =38) 73831 5.90 453 [85%]* 3.20 -
EXPPLATPRO.-RAND (T =2) 65994 5.80 .382 310 3.10 .00096
EXPPLATPRO.-RAND (T =4) 67082 5.90 395 333 3.10 .00103
EXPPLATPRO.-RAND (T = 8) 67329 5.80 .390 329 3.15 .00103
RLS 47526 90.22 4.287 222 37.27 .00827
RLS-LTM 47442 9.40 445 75 5.50 .00041
RLS-LTM-STATDEGREE 45259 7.30 .330 84 4.50 .00037

aThe algorithm is not always able to find the maximum clique; the percent of successes is reported in these cases.

o Exp-DynDegree v

200 1 4 RLS-LTM e
-+ DLS-MC(pd=2) Fo o
100 - S0n T
P
Lo
o 50 °
c ~
8 L
b 6
o X7,
R : A
€ 104 N S e
Cae-ma T s
5 e . aa
A - B
-t
-
24
T T T T T
600 800 1000 1200 1400

Fig. 7. Empirical cost per iteration in ps on Gilbert’s graphs. Log-log scale.

1.00 H #8 ¥ xxxx%xx X %
\+\\o
0.98 &
|
0.96 \ v
s
0.94 °
\LA
L
0.92 - \+\ \

ks
0.90 - &
A E—
+ — &
0.88 - T
&

o DLS-MC (10,000,000 iter.)

A"DLS-MC (1,000,000 iter.)

+ DL$-MC (100,000 iter.)

x. ExpPlat Prohibitions—Rand (100,000.iter.)

success rate

penalty or prohibition parameter

Fig. 8. Success ratio of penalty- and prohibition-based algorithms on instances of
the preferential attachment model.

any case to reduce the average number of iterations. The complexity
added to the algorithms by the plateau search does not increase the
cost per iteration. On the contrary, especially for the algorithms using
the dynamic degree for candidate selections, it reduces the CPU time
per iteration.

On Gilbert’s graphs, where the nodes have the same degree on av-
erage, prohibition- or penalty-based algorithms perform better than
pure random selections. On instances of the preferential attachment
model, algorithms selecting the nodes using information about the
degree are faster.

On the contrary, degree-based algorithms have poorer perfor-
mance than random-selection algorithms in Gilbert’s graphs, while
prohibition- and penalty-based algorithms are disadvantageous in
the preferential attachment model. The penalty heuristic is less ro-
bust than the prohibition heuristic, depending on the appropriate
selection of the penalty value.

RLS-LTM and RLS-LTM-STATDEGREE always perform better than
the other algorithms. The cost per iteration of RLS-LTM-STATDEGREE
is bigger than the one of DLS-MC, although of the same order of
magnitude. But the fewer steps needed on average to find the best
cliques make RLS-LTM the best choice for the two graph models con-
sidered in this paper, especially considering that no detailed tuning
is executed in RLS before running the comparison.

The software corresponding to the algorithm, benchmark graphs
and the heuristically optimal values are available at request for re-
search purposes.

Acknowledgments

We thank Holger Hoos and the co-authors for making available
the software corresponding to the DLS-MC algorithm.

Appendix A. DIMACS benchmark set

The following table compares DLS-MC (PD = OPT) and RLS on
a selected “snapshot” of the DIMACS benchmark set. The results
presented are averages on 100 runs of 100,000,000 maximum
steps each. DLS-MC (PD = OPT) is DLS-MC with the pd parame-
ter set to the optimal value for each single instance as suggested
in [14].

For each instance and both algorithms Table 4 shows the me-
dian clique size with the median percentage deviation from the best
known. The CPU time and iteration medians and interquartile ranges
(IQRs) are reported only for successful runs.

One algorithm dominates the other if it has a bigger median solu-
tion quality, or a smaller median percentage deviation from the best
known. If both algorithms are able to find the MC on every run, the

Operations Research (2009), doi:10.1016/j.cor.2009.02.013

Please cite this article as: Battiti R, Mascia F. Reactive and dynamic local search for max-clique: Engineering effective building blocks. Computers and

http://dx.doi.org/10.1016/j.cor.2009.02.013

8 R. Battiti, F. Mascia / Computers & Operations Research 111 (11H1) INR-111

Table 4
Algorithm comparison on a selected sub-set of the DIMACS benchmark instances.
Instance Best DLS-MC (pd = opt) RLS-LTS

Solution quality CPU(s) Steps Solution quality CPU(s) Steps
C125.9 34 34 (0.00) <0.001 175 (215) 34 (0.00) <0.001 88 (118)
C250.9 44 44 (0.00) <0.001 1348 (1770) 44 (0.00) <0.001 1060 (1010)
C500.9 57 57 (0.00) 0.030 (0.040) 59780 (76 900) 57 (0.00) 0.115 (0.253) 82740 (181010)
C1000.9 68 68 (0.00) 0.360 (0.630) 409500 (716300) 68 (0.00) 1.465 (2.035) 703000 (973 400)
C2000.9 78 78 (0.00) - - 78 (0.00) - -
DSJC1000_5 15 15 (0.00) 0.330 (0.527) 81560 (130700) 15 (0.00) 0.200 (0.335) 31720 (53220)
DSJC500_5 13 13 (0.00) 0.010 (0.010) 2454 (3954) 13 (0.00) 0.000 (0.010) 1131 (1692)
C2000.5 16 16 (0.00) 0.370 (0.743) 59000 (117 180) 16 (0.00) 0.465 (0.640) 35760 (49150)
C4000.5 18 18 (0.00) 119.000 (143.920) 9686000 (11710000) 18 (0.00) 107.000 (147.820) 3705000 (5113000)
MANN_a27 126 126 (0.00) 0.020 (0.010) 60240 (26820) 126 (0.00) 0.070 (0.073) 62760 (72060)
MANN_a45 345 344 (0.29) - - 344 (0.29) - -
MANN_a81 1099 1 098 (0.09) - - 1098 (0.09) - -
brock200_2 12 12 (0.00) 0.010 (0.020) 12230 (20680) 2 (0.00) 0.090 (0.150) 49 100 (83 670)
brock200_4 17 17 (0.00) 0.030 (0.040) 39960 (51020) 7 (0.00) 0.190 (0.493) 135000 (346480)
brock400_2 29 29 (0.00) 0.230 (0.362) 2323800 (371300) 9 (0.00) - -
brock400_4 33 33 (0.00) 0.030 (0.040) 28770 (37720) 3 (0.00) 3.365 (4.530) 1890000 (2521300)
brock800_2 24 24 (0.00) 7.870 (10.178) 3397000 (4387000) 1(14.29) - -
brock800_4 26 26 (0.00) 3.275 (4.442) 1410000 (1914 600) 1(23.81) - -
gen200_p0.9_44 44 44 (0.00) <0.001 1 934 (3981) 44 (0.00) <0.001 1535 (1832)
gen200_p0.9_55 55 55 (0.00) <0.001 333 (827) 55 (0.00) <0.001 596 (562)
gen400_p0.9_55 55 55 (0.00) 0.010 (0.020) 33920 (57910) 55 (0.00) 0.030 (0.040) 21160 (30150)
gen400_p0.9_65 65 65 (0.00) <0.001 1001 (1480) 65 (0.00) <0.001 1294 (1132)
gen400_p0.9_75 75 75 (0.00) <0.001 507 (777) 75 (0.00) <0.001 1576 (1184)
hamming8-4 16 16 (0.00) <0.001 28 (16) 16 (0.00) <0.001 16 (0)
hamming10-4 40 40 (0.00) 0.000 (0.010) 2469 (3241) 40 (0.00) 0.000 (0.010) 529 (1044)
keller4 11 1 (0.00) <0.001 40 (44) 1 (0.00) <0.001 11 (8)
keller5 27 27 (0.00) 0.010 (0.020) 6345 (8798) 27 (0.00) 0.010 (0.030) 2828 (7150)
keller6 59 59 (0.00) - - 59 (0.00) 6.765 (12.482) 686500 (1265300)
p_hat300-1 8 8 (0.00) <0.001 163 (266 8 (0.00) <0.001 128 (192)
p_hat300-2 25 25 (0.00) <0.001 113 (108 25 (0.00) <0.001 27 (20)
p_hat300-3 36 6 (0.00) <0.001 530 (806) 6 (0.00) <0.001 633 (1232)
p_hat700-1 11 1 (0.00) 0.010 (0.010) 2014 (3276) 1 (0.00) 0.010 (0.020) 1336 (1898)
p_hat700-2 44 4 (0.00) <0.001 281 (322) 4 (0.00) <0.001 112 (83)
p_hat700-3 62 2 (0.00) <0.001 585 (501) 2 (0.00) <0.001 219 (282)
p_hat1500-1 12 2 (0.00) 1.330 (1.720) 207900 (269230) 2 (0.00) 1.690 (2.090) 145400 (180920)
p_hat1500-2 65 65 (0.00) 0.000 (0.010) 784 (1061) 5 (0.00) 0.010 (0.010) 331 (1244)
p_hat1500-3 94 94 (0.00) 0.000 (0.010) 1867 (2610) 94 (0.00) 0.010 (0.010) 1253 (1498)

The table shows the median solution quality and within brackets the median percentage deviation from the best known, as well as CPU seconds and steps medians with

IQR within brackets. The dominating algorithm is highlighted in bold.

dominating algorithm is the one having either a smaller median CPU
time or, in the case of no measurable difference in the CPU times, a
smaller number of iterations. The comparisons are assessed statisti-
cally by means of a Mann-Whitney U-test (Wilcoxon rank-sum test)
at significance level 0.05. The dominating algorithm is highlighted
in bold.

Let us note again that the comparison below is not fair, be-
cause in one case (DLS-MC) one reports only the time correspond-
ing to the optimal setting of an individual pd parameter for each
instance, while in the second case this extensive tuning phase is
absent.

In most cases, apart from the *“camouflaged” Brockington-
Culberson graphs [7], the optimal values obtained are the same.
These graphs have been designed to be difficult for greedy algo-
rithms; therefore it is not surprising that the greedy node selection
of RLS negatively impacts on the performance on those graphs. For
the CPU times, in many cases the graph dimension is so small that
the measure becomes difficult; in some other cases RLS has times
which are larger but of the same order of magnitude. For other
instances RLS CPU time is shorter, which is quite unexpected given
the absence of the tuning phase.

References

[1] Barabasi AL, Albert R. Emergence of scaling in random networks. Science
1999;286:509-12.

[2] Batagelj V, Brandes U. Efficient generation of large random networks. Physical
Review E 2005;71(3):036113.

[3] Battiti R, Protasi M. Reactive local search for the maximum clique problem.
Technical Report TR-95-052, ICSI, 1947 Center St. - Suite 600 - Berkeley,
California, September 1995.

[4] Battiti R, Tecchiolli G. The reactive tabu search. ORSA Journal on Computing
1994;6(2):126-40.

[5] Battiti R, Bertossi AA. Greedy, prohibition, and reactive heuristics for graph
partitioning. IEEE Transactions on Computers 1999;48(4):361-85.

[6] Battiti R, Protasi M. Reactive local search for the maximum clique problem.
Algorithmica 2001;29(4):610-37.

[7] Brockington M, Culberson JC. Camouflaging independent sets in quasi-random
graphs. In: Johnson DS, Trick MA, editors. Cliques, coloring, and satisfiability:
second DIMACS implementation challenge, vol. 26, American Mathematical
Society; 1996. p. 75-88.

[8] Butenko S, Wilhelm W. Clique-detection models in computational biochemistry
and genomics. Journal of Operational Research 2006;173:1-17.

[9] Hastad]. Clique is hard to approximate within n'~¢. In: Proceedings of 37th
annual IEEE symposium on foundations of computer science, IEEE Computer
Society; 1996. p. 627-36.

[10] Hagberg A, Schult D, Swart P. NetworkX library developed at the Los Alamos
National Laboratory Labs Library (DOE) by the University of California, 2004.
Code available at:(https://networkx.lanl.gov/).

Operations Research (2009), doi:10.1016/j.cor.2009.02.013

Please cite this article as: Battiti R, Mascia F. Reactive and dynamic local search for max-clique: Engineering effective building blocks. Computers and

https://networkx.lanl.gov/
http://dx.doi.org/10.1016/j.cor.2009.02.013

R. Battiti, F. Mascia / Computers & Operations Research 11 (11H1) INR-111

[11] Ji Y, Xu X, Stormo GD. A graph theoretical approach to predict common [14] Pullan W, Hoos HH. Dynamic local search for the maximum clique problem.
RNA secondary structure motifs including pseudoknots in unaligned sequences. Journal of Artificial Intelligence Research 2006;25:159-85.
Bioinformatics 2004;20(10):1591-602. [15] Battiti R, Brunato M, Mascia F. Reactive search and intelligent optimization
[12] Matula DW. The largest clique size in a random graph. Southern Methodist operations research/computer science interfaces series, vol. 45. Springer,
November 2008.

University; 1976.
[13] Pardalos PM, Xue]. The maximum clique problem. Journal of Global

Optimization 1994;4:301-28.

Please cite this article as: Battiti R, Mascia F. Reactive and dynamic local search for max-clique: Engineering effective building blocks. Computers and
Operations Research (2009), doi:10.1016/j.cor.2009.02.013

http://dx.doi.org/10.1016/j.cor.2009.02.013

	Reactive and dynamic local search for max-clique: Engineering effective building blocks
	Prohibition- and penalty-based methods for maximum clique
	Algorithmic building blocks of increasing complexity
	Repeated expansions
	Expansion and plateau search
	Algorithms based on penalties or prohibitions

	Computational experiments
	Benchmark graphs
	Implementation details and cost per iteration of RLS
	Results summary
	Penalties versus prohibitions

	Conclusions
	Acknowledgments
	Appendix A. DIMACS benchmark set
	References

