
Randomized Greedy Algorithms for the Hypergraph

Partitioning Problem

R. Battiti, A. Bertossi, and R. Rizzi

Abstract. We propose a series of randomized greedy construction schemes

for the hypergraph partitioning problem. While the �nal results are infe-

rior to those obtained by recent multi-level methods, the advantages of our

greedy schemes are their simplicity and low computational complexity. The

best greedy algorithms considered obtain low cut values and large standard

deviations of the results. Therefore, when independent repetitions are con-

sidered, the quality of the best solution greatly improves and, in some cases,

it is superior to the variable-depth Fiduccia-Mattheyses (FM) algorithm, for

smaller CPU times. Furthermore, the algorithms can be used as building

blocks in more complex schemes. For example, we successfully employ our

greedy schemes to produce initial partitions for improvement-based heuristics.

In particular, if FM is run starting from partitions generated by our greedy

schemes, instead of random initial solutions, a signi�cant improvement of the

average solution quality is achieved for comparable computation times.

1. Introduction

The hypergraph partitioning problem is de�ned as follows (in this paper we

consider only the case of partitioning into two sets, also called bisection). Let

H(V;E) be an hypergraph, that is a set V of nodes plus a set E of subsets of V

called hyperedges (or simply edges), see also Fig. 1. One is required to partition the

nodes in V into two sets, say Set

0

and Set

1

, aiming at minimizing the number of

broken edges, i.e, edges in E containing nodes on both sides of the partition, while

obeying a constraint on the smallest possible sizes (min size) of Set

0

and Set

1

.

Equivalently, one is given a percentage value, for example 45%, and is required to

return a partition in which the cardinalities of Set

0

and Set

1

both exceed 0:45 �

jV j. Because of its physical realization (nodes are modules and a hyperedge is an

electrical network connecting a set of modules) one often uses the term \circuit

partitioning."

Hypergraph partitioning has recently emerged as a central issue in VLSI de-

sign [1, 9]. First of all, in VLSI placement, a divide and conquer approach is taken
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where the circuit is hierarchically divided into smaller components using hyper-

graph partitioning [16]. The formulation also �nds applications in rapid prototyp-

ing where the goal typically is to partition to a minimal number of FPGAs (Field

Programmable Gate Arrays) under di�erent constraints such as available number

of pins and routing resources [4, 12, 13, 14, 22]. Another application area is the

design for testability of VLSI circuits where the circuit is partitioned into smaller

parts to facilitate testing [21]. However the importance of the hypergraph parti-

tioning problem goes beyond VLSI design. For example, electrical circuits with

multiple-pin nets are readily modeled as hypergraphs. Other applications include

data mining [18], e�cient storage of large databases on disks [19], clustering and

partitioning of the roadmap database for routing applications [20], de-clustering

data in parallel databases [19].
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Figure 1. A hypergraph (left) and a concrete realization as elec-

trical circuit (right).

In the last years one has observed a blossoming of graph and hypergraph par-

titioning algorithms and software packages (METIS, MELO, Paraboli, SCOTCH).

The solution quality and reliability improvements which have come along is remark-

able and would have been unpredictable only a few years ago [1, 9, 5, 6]. We refer

to [1] for a recent survey of the problem and for detailed references.

Because graph bisection is a special case of hypergraph bisection and is NP-

hard, hypergraph bisection is NP-hard as well. However, because of the importance

of the problem, many heuristic algorithms have been developed [1]. A widely used

class of iterative improvement partitioning algorithms start by randomly generat-

ing an initial partition and then attempt to progressively reduce the cut value of

the partition by repeatedly moving vertices between the two parts of the partition.

The most used among these algorithms is the Fiduccia-Mattheyses [7, 8] (FM)

algorithm, derived from the seminal Kernighan-Lin algorithm for graph partition-

ing [10]. In the FM algorithm a vertex (that is not locked) is moved that results in

the greatest reduction in the edge-cuts, which is also called the gain for moving the

vertex. Because more nodes can have the same gain, Krishnamurty [11] proposed

to look ahead up to r levels of gains before making moves as a tie breaking rule to

be used when more nodes achieve the same reduction of the edge-cuts, a frequent

case of real-world partitioning problems.
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In this paper we analyze the performance of greedy strategies in the context

of hypergraph bisection. The basic motivation of our research is to investigate

whether one could extend to hypergraphs the successful performance of greedy

schemes previously obtained on graphs [2]. The results obtained are not competitive

with state-of-the-art multi-level algorithms [9]. Nonetheless, our analysis shows

greedy schemes to be a practical and viable choice for applications characterized by

strong trade-o�s between solution quality and computation time, like for example

declustering data in parallel databases and other applications in parallel computing.

Moreover, our schemes can be used as building blocks of more complex schemes.

For example, we compared the classical improvement-based Fiduccia-Mattheyses

heuristic, starting from a random initial solution, against the same heuristic, but

starting from solutions produced by a greedy scheme. While the computation time

of the two algorithms is comparable, the improvement in terms of average solution

quality is signi�cant.

The following part of this paper is organized as follows. The benchmark graphs

considered for the VLSI applications are described in Sec. 2, some simple greedy

approaches are presented in Sec. 3, while the more e�ective Likelihood Greedy

algorithm is presented in Sec. 4. The results obtained when Fiduccia-Mattheyses

starts from our greedy solutions are discussed in Sec. 5. Finally, the implementation

details, computational complexity, and measured CPU times are presented in Sec. 6.

2. Benchmarks

The computational tests in this paper are executed on the collection of hyper-

graphs (nets) proposed as benchmarks for the hypergraph partitioning problem by

Chuck Alpert

1

. All nets are in netlist format.

The nets are collected into three major groups:

� Cheng's nets, made available by C.K. Cheng at UCSD.

� VPNR nets, obtained by translating in netlist format some instances �rst

represented in VPNR format.

� Large nets, made available by Lars Hagen (lars@cadence.com).

The characteristics of these hypergraphs are shown in Table 1. The column

labeled \Best" lists the heuristically best value from Table 7 of [9]. Most of these

results are obtained with a �nely tuned multi-level algorithms (hMETIS) that is

considered the state of the art for hypergraph problems of interest in the VLSI com-

munity. The two additional columns list quantities involved in the computational

complexity of some greedy schemes (jhj is the cardinality of hyperarc h), see Sec 6.

Chuck Alpert has made available an e�cient implementation of the Fiduccia-

Mattheyses Algorithm

2

. The implementation uses a LIFO (last-in-�rst-out) bucket

structure which many researchers discovered to be signi�cantly more e�ective than

either FIFO (�rst-in-�rst-out) or random bucket structures [8]. This FM implemen-

tation provides a standard and basic benchmark against which other partitioning

codes can be measured in terms of runtimes and solution quality.

We have run our Greedy algorithms 100 times on each single net. In the tables

one reports the minimum value found among all runs (Min), the average values

obtained (Ave) and the standard deviation of the values (Sdev). The standard

1

These nets are publically available on the \Circuit Partitioning Page" at URL

http://vlsicad.cs.ucla.edu/~cheese/benchmarks.html .

2

Available on WWW at URL http://vlsicad.cs.ucla.edu/~cheese/codes.html.
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graph vertices hyperedges pins \Best" �

h2E(H)

jhj

2

�

h2E(H)

jhj

2

log jV j

balu 801 735 2697 27 33637 97669

p1 833 902 2908 47 15422 45042

bm1 882 903 2910 47 15426 45436

t4 1515 1658 5975 48 258673 822686

t3 1607 1618 5807 57 136691 438233

t2 1663 1720 6134 87 217016 698985

t6 1752 1541 6638 60 251541 815881

structP 1952 1920 5471 33 22555 74216

t5 2595 2750 10076 71 558422 1906529

19ks 2844 3282 10547 104 382443 1320931

p2 3014 3029 11219 139 85723 298242

s9234P 5866 5844 14065 40 46076 173630

biomedP 6514 5742 21040 83 2582834 9850535

s13207P 8772 8651 20606 53 77706 306402

s15850P 10470 10383 24712 42 90199 362595

industry2 12637 13419 48158 168 1786670 7328284

industry3 15406 21923 65791 241 425483 1781790

s35932 18148 17828 48145 41 2476306 10546163

s38584 20995 20717 55203 47 342383 1479819

avq.small 21918 22124 76231 127 63318301 274852139

s38417 23849 23843 57613 50 230903 1011190

avq.large 25178 25384 82751 127 63331341 278722576

golem3 103048 144949 338419 1424 940085 4712683

Table 1. The characteristics of the hypergraphs used to evaluate

the algorithms. The \Best" column lists the heuristically best value

from Table 7 of [9].

deviation of the estimated averages can be obtained by dividing the above Sdev

value by the square root of the number of tests, i.e. by 10.

The computational tests discussed in this paper have been executed on a ma-

chine with the following characteristics:

� CPU: Pentium Pro

� Clock: 200 MHz

� Con�guration: 160 MByte

� Operating System: Red Hat Linux release 4.1 (Vanderbilt)

� Compiler: Gnu g++ version 2.7.2.1 with maximum optimization

In this preliminary investigation, the focus of attention is on the average results

and standard deviations obtained by the di�erent approaches and on their compu-

tational complexity more than on the the obtained computing times. Nonetheless,

CPU times for the given machines are reported in Sec. 6.3. The standard deviation

is of interest when independent repetitions of the algorithms are considered and the

minimum is returned.

3. Simple greedy approaches

Motivated by the previous success of some greedy heuristics for the graph par-

titioning problem [3, 2], we investigate in this paper the behavior of a greedy

approach for the hypergraphs partitioning problem.

Our general scheme is the following: At the beginning both Set

0

and Set

1

are

empty and all nodes are marked as free. Then free nodes are inserted one by one

into either Set

0

or Set

1

. Insertions are de�nitive: once a node has been added to



RANDOMIZED GREEDY ALGORITHMS FOR HYPERGRAPH PARTITIONING 5

Set

i

(i = 0; 1) it will stay there until the end of the algorithm. A node inserted

into Set

i

is no longer free but �xed to i.

To ease the comparisons among di�erent strategies, we have adopted the fol-

lowing rule. First, nodes are added alternately to Set

0

and Set

1

until the sizes of

both sets reach the min size value. Finally, the remaining free nodes are inserted

one by one into either set, aiming at obtaining the smallest increase of newly broken

edges.

The algorithms considered in this paper correspond to the above scheme, di�er-

ing only in the way they choose the next node to be inserted. Each greedy scheme

can be described with the help of a gain function which expresses the pricing pol-

icy of the heuristic. For each node v, gain(v; 0) is the heuristic's estimate of the

advantage of assigning v to Set

0

. Similarly gain(v; 1) is the gain for assigning v to

Set

1

. At each move the scheme greedily strives to maximize the gain.

All nodes of a certain gain are stored into a list and the following criterion [8]

is used for inserting and deleting nodes. When the gain of a node is increased the

node is inserted at the beginning of the corresponding list. When the gain of a

node is decreased the node is inserted at the end. At each move the greedy scheme

chooses the �rst node in the list of nodes of maximum gain.

A common characteristic of the schemes considered here is that the gain of

node v is the sum of many terms, one for every hyperedge containing v:

gain(v; i) =

X

h3v

g

h

(v; i)

A scheme is de�ned by specifying g

h

(v; i) for a generic hyperedge h. When g(v; 0) =

�g(v; 1) for each node v, the scheme is said consistent. Consistent schemes turned

out to be most e�ective. When a scheme is consistent we can de�ne the gain of

a node as an absolute value (not depending on a speci�c side of the bipartition),

precisely as g(v) = g(v; 1). When choosing a node to be inserted into Set

1

, the

heuristic strives to maximize the gain. When searching for a node to be inserted

into Set

0

, a node of minimum gain is chosen. More precisely, all consistent schemes

obey the following rules:

(i) when we seek for a node to be inserted into Set

1

, then we choose randomly

and with uniform probability a node of maximum gain.

(ii) when we seek for a node to be inserted into Set

0

then we choose randomly

and with uniform probability a node of minimum gain.

(iii) Assume we have to choose a node to be inserted in whichever set of the

partition. If max gain > �min gain then we decide to insert into Set

1

and

go to (ii). If max gain = �min gain then we choose at random and with

equal probability whether to insert into Set

1

and go to (ii) or to insert into

Set

0

and go to (i). Otherwise we decide to insert into Set

0

and go to (i).

We are interested in heuristics which are robust and can be executed repeatedly

to improve the solution quality. Therefore randomization is desirable in our greedy

schemes. At the beginning, when all nodes are still free and all gains are zero, all

nodes are inserted into the zero-gain list in a random order. The experiments show

that this source of randomness su�ces to derive a robust heuristic. The standard

deviation of the cut value returned for a given input hypergraph is signi�cant, so

that much better results can be achieved by repeating the greedy construction with

a di�erent random seed.

Let us now describe how the gains are calculated in the di�erent schemes.
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3.1. �f Greedy. The method is the most straightforward greedy approach,

based only on the consideration of the function to be minimized. In each step of

the algorithm, let f be the number of broken edges. At termination f is the value

of the partition obtained. An edge is said to be broken when it contains nodes both

�xed to 0 and �xed to 1.

The idea behind the �f Greedy algorithm is to choose randomly between those

nodes which produce the smallest possible increase of the number of broken edges

(the value of f) when they are added to the current partition.

Let v be a free node and h an hyperedge. If v =2 h then g

h

(v; i) = 0 for i = 0; 1.

Otherwise g

h

(v; i) is given as follows.

g

h

(v; i) =

�

�1 if jhj

1�i

> 0 and jhj

i

= 0

0 otherwise

where jhj

i

= jh\ Set

i

j (for i = 0; 1). When we look for a node to be added to Set

i

we search for a free node v which maximizes gain(v; i). When i is not given, that is,

when jSet

0

j � min size and jSet

1

j � min size, then one maximizes the gain both

over v and over i 2 f0; 1g. If there are ties, a random choice among the winning

nodes is executed. The implementation uses a standard \buckets" structure.

As expected, and as noted independently by many previous researchers, the

results obtained by this immediate greedy algorithm are very unsatisfactory, see

Table 2. The problem is caused by the large number of ties that are present during

the greedy construction: the algorithm is forced to make a \blind" choice among a

very large set of winning nodes.

3.2. Critical Edges Greedy. In our previous work about graph partition-

ing [2] a greedy approach with a gain function given by the di�erence between

connections of node v to Set

0

and connections of node v to Set

1

was the most

successful option. Therefore we were motivated to modify the method for the case

of hypergraphs.

The modi�cations must take into account the fact that di�erent hyperedges h

containing a node v should not be given the same weight when deciding about an

addition. In particular, if h contains already nodes in both sets (see situation (a) in

Fig. 2) it should not be considered: there is no way to undo its cut. If at least two

nodes of h are free (situations (b) and (c) in Fig. 2) and all other nodes, if any, are

�xed to the same set, then one cannot decide the fate of h during a single addition.

For example, in situation (c), even if node u is added to Set

0

, node v may be added

to Set

1

in the future steps, therefore breaking the hyperedge. The cases in which

the fate can be decided in one step are those corresponding to situation (d), where

only one node is free and all other nodes have been added to the same set. If the

free node is added to the same set, h is not broken, otherwise it is. An edge is said

0-critical when all of its nodes are �xed to 0, except for a single free node. An edge

is 1-critical when all of its nodes are �xed to 1, except for a single free node.

Critical Edges Greedy is our �rst example of a consistent scheme resulting

from the adaptation of the Di�erential-Greedy algorithm [2] to hypergraphs. In

each step of the algorithm, the gain of a free node v is de�ned as the number of

1-critical edges containing v minus the number of 0-critical edges containing v. The

implementation uses the \buckets" data structure.

When the results are compared with those of �f Greedy, see Table 2, one

observes a much better performance for most graphs. In particular, macroscopic
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Set0 Set1

Set0 Set1 Set0 Set1

u

Set0 Set1

(a) (b)

(c) (d)

v

Figure 2. Critical and non-critical hyperedges (see text for explanation).

di�erences are observed for the larges graphs. For example, when the minimum

value is considered, one passes from 5,748 to 1,168 broken edges for industry3,

from 32,034 to 2,383 for golem3. Nonetheless, the average and minimum results

are very far from those of the FM algorithm.

3.3. Weighted Greedy. The Weighted Greedy algorithm is a second con-

sistent scheme with the aim of considering in a more gradual way the e�ect of

non-critical edges. The previous approach does not give any preference informa-

tion when the weights obtained by considering only critical edges is the same for

di�erent nodes.

Let v be a free node and h an hyperedge. If v =2 h or if h is broken then

g

h

(v) = g

h

(v; 1) = 0. Otherwise g

h

(v) =

jhj

1

jhj

�

jhj

0

jhj

, where jhj is the number of

nodes in h and jhj

i

= jh\Set

i

j for i = 0; 1. (In particular either jhj

1

= 0 or jhj

0

= 0

because h is not broken). The implementation uses binary heaps to store the gain

values.

The last column in Table 2 presents the results obtained by the Weighted

Greedy algorithm. A notable improvement is obtained with respect to the Critical

Edges Greedy. In particular, both the average and the minimum results become

roughly comparable to those obtained by FM. In some cases FM results are beaten

(these cases are written in boldface in the table). In the other cases the di�erence

is often small.

4. The Likelihood Greedy algorithm

Weighted Greedy clearly outperforms all competitors examined in Table 2.

Critical Edges Greedy su�ers from the following weakness: only critical edges play

a role in the choices of the algorithm. Our �rst attempt to consider non-critical

edges was represented by the Weighted Greedy algorithm. However the policy of

Weighted Greedy can be ameliorated. In particular the gain calculation can be
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Graph Fiduccia �f Greedy Critical Edges Greedy Weighted Greedy

Min Ave (Sdev) Min Ave (Sdev) Min Ave (Sdev) Min Ave (Sdev)

baluP 30 66.3 (18.6) 152 198.1 (17.0) 160 196.8 (11.8) 28 63.1 (23.1)

p1 47 74.9 (13.7) 202 249.1 (18.6) 147 192.4 (15.2) 57 90.2 (16.9)

bm1 49 75.8 (14.9) 192 242.5 (18.8) 164 197.4 (15.7) 59 87.9 (14.6)

t4 80 135.6 (25.4) 352 426.3 (28.8) 259 307.7 (20.3) 55 114.6 (28.0)

t3 62 108.7 (22.1) 305 422.0 (33.8) 237 308.4 (22.4) 67 128.1 (34.8)

t2 124 175.5 (24.2) 395 472.9 (26.5) 258 324.1 (17.3) 100 149.3 (26.7)

t6 60 91.0 (14.8) 417 475 (26.7) 183 212.6 (17.4) 62 117.6 (30.0)

structP 41 55.4 (8.6) 406 444.4 (18.4) 346 418.6 (26.9) 41 106.6 (35.6)

t5 104 179.4 (35.6) 521 688.9 (43.7) 371 446.8 (33.4) 86 151.6 (36.8)

19ks 130 178.9 (26.8) 583 696.3 (40.8) 416 479.2 (32.0) 124 221.6 (55.1)

p2 182 278.5 (40.3) 832 928.5 (47.0) 752 808.9 (21.5) 232 319.9 (54.6)

s9234P 51 89.9 (25.2) 1122 1182.9 (25.4) 326 372.2 (16.9) 60 123.9 (44.9)

biomedP 83 126.5 (40.1) 1259 1569.4 (172.2) 890 944.7 (23.2) 128 223.1 (34.6)

s13207P 78 126.2 (21.3) 1553 1670.2 (34.3) 456 499.4 (16.4) 118 181.0 (37.7)

s15850P 104 184.0 (29.4) 1934 2030.4 (34.3) 558 627.9 (20.9) 104 167.9 (33.0)

industry2 264 602.1 (161.8) 2815 3233.0 (157.1) 1702 1885.1 (73.3) 306 715.3 (295.7)

industry3 263 484.6 (161.0) 5748 6167.1 (112.6) 1168 2648.3 (815.6) 555 961.5 (335.0)

s35932 85 203.5 (53.7) 3170 3302.0 (52.1) 1137 1245.6 (42.2) 45 187.8 (92.9)

s38584 63 258.8 (120.3) 4300 4476.6 (64.7) 1788 1889.9 (42.4) 97 253.5 (106.7)

avq.small 343 620.3 (116.3) 4904 5573.6 (233.7) 3454 3637.0 (70.2) 328 590.7 (120.3)

s38417 147 368.0 (92.3) 4747 4870.3 (58.4) 1546 1647.3 (36.8) 95 198.2 (48.6)

avq.large 373 759.3 (123.9) 5335 6166.7 (295.0) 3449 3625.1 (79.6) 325 694.9 (157.5)

golem3 2175 3217.9 (304.0) 32034 32379.5 (160.1) 2383 3449.6 (714.2) 5634 6109.6 (214.5)

Table 2. Simple greedy schemes compared with Fiduccia-

Mattheyses (FM)

unfair if two hyperedges h

1

and h

2

have widely di�erent numbers of nodes already

added. For example, suppose that jh

1

j = 3, jh

2

j = 6, while jh

1

j

1

= 2 and jh

2

j

1

= 4

(and no node in Set

0

). The contribution to the gain from h

1

and from h

2

will

be equal, while h

1

is a critical edge and the addition of the single remaining free

node to Set

1

should be preferred to the addition of a free node in h

2

, with the

danger of a subsequent cut of h

2

when its second node is added. In other words,

the number of nodes already added to hyperedge should not in
uence the addition

of the remaining nodes. Our �rst greedy approaches have been modi�ed to take

these comments into account and the experimental results obtained con�rm the

intuitive expectations.

Likelihood Greedy is a consistent scheme. Let v be a free node and h an

hyperedge. If v =2 h or if h is broken then g

h

(v) = g

h

(v; 1) = 0. Otherwise g

h

(v) is

given as follows.

g

h

(v) =

8

<

:

1

2

jhj

f

�1

if jhj

1

> 0 and jhj

0

= 0

�

1

2

jhj

f

�1

if jhj

0

> 0 and jhj

1

= 0

0 otherwise.

where jhj

i

= jh\Set

i

j (for i = 0; 1) and jhj

f

denotes the number of free nodes of h.

The rationale for such a choice of gains is the following. Let u be any free

node of h. The a priori probability of node u being assigned to Set

0

is

1

2

and it

is the same as the probability of node u being assigned to Set

1

. Let us assume

that jhj

1

> 0 and jhj

0

= 0. If v is assigned to Set

0

then hyperedge h gets broken.

To favor additions to Set

1

the gain g

h

(v) is positive. However, assigning node

v to Set

1

is not su�cient to guarantee that h will not be in the �nal cut set
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Graph Fiduccia (3)-Likelihood Greedy (10)-Likelihood Greedy Likelihood Greedy

Min Ave (Sdev) Min Ave (Sdev) Min Ave (Sdev) Min Ave (Sdev)

baluP 30 66.3 (18.6) 33 62.2 (15.1) 29 51.6 (13.8) 29 51.4 (14.1)

p1 47 74.9 (13.7) 65 89.2 (11.3) 67 83.7 (10.0) 63 82.9 (11.0)

bm1 49 75.8 (14.9) 61 88.8 (11.3) 59 87.0 (9.9) 62 86.2 (9.9)

t4 80 135.6 (25.4) 74 128.0 (19.9) 69 112.2 (17.3) 67 104.4 (19.8)

t3 62 108.7 (22.1) 70 123.4 (30.2) 60 100.3 (27.6) 60 93.9 (25.7)

t2 124 175.5 (24.2) 108 142.2 (16.7) 104 138.6 (19.3) 103 141.4 (18.1)

t6 60 91.0 (14.8) 93 122.3 (12.9) 64 89.8 (11.7) 67 84.9 (9.6)

structP 41 55.4 (8.6) 42 82.9 (19.5) 46 84.2 (19.3) 46 82.3 (21.7)

t5 104 179.4 (35.6) 109 145.0 (22.0) 85 123.6 (22.9) 76 127.0 (22.4)

19ks 130 178.9 (26.8) 163 248.2 (36.7) 166 225.4 (27.6) 165 225.1 (27.4)

p2 182 278.5 (40.3) 252 339.1 (31.0) 232 313.0 (36.6) 222 307.5 (40.1)

s9234P 51 89.9 (25.2) 67 130.3 (35.1) 61 114.6 (33.1) 63 129.5 (28.1)

biomedP 83 126.5 (40.1) 156 214.2 (36.1) 123 194.5 (33.7) 91 159.6 (44.1)

s13207P 78 126.2 (21.3) 115 168.0 (12.4) 98 158.7 (16.9) 97 151.0 (17.3)

s15850P 104 184.0 (29.4) 90 150.7 (29.4) 89 133.6 (25.4) 92 131.7 (26.2)

industry2 264 602.1 (161.8) 601 881.0 (114.0) 499 762.7 (112.6) 310 768.2 (166.4)

industry3 263 484.6 (161.0) 618 1047.7 (308.4) 454 873.7 (274.1) 334 819.0 (341.1)

s35932 85 203.5 (53.7) 85 155.2 (39.8) 74 105.0 (25.8) 73 103.6 (33.9)

s38584 63 258.8 (120.3) 165 275.4 (64.5) 93 202.1 (73.1) 73 202.6 (74.6)

avq.small 343 620.3 (116.3) 312 535.6 (82.6) 228 516.3 (74.5) 241 513.3 (73.1)

s38417 147 368.0 (92.3) 91 180.8 (38.9) 82 144.6 (28.1) 74 143.6 (24.8)

avq.large 373 759.3 (123.9) 376 584.8 (87.7) 348 567.0 (89.3) 382 567.1 (87.4)

golem3 2175 3217.9 (304.0) 5084 5736.0 (229.1) 1935 3077.8 (312.3) 2405 3009.5 (313.4)

Table 3. Di�erent versions of the Likelihood Greedy scheme

returned by the algorithm. In fact, this will require that each free node of h is

assigned to Set

1

. Therefore, if node v is assigned to Set

1

, then the probability of

h not being broken is

1

2

jhj

f

�1

, in the crude assumption that each node has equal

probability of being added to either set and that the individual additions are done

independently. In fact, let x

h

be a random variable associated to our random

heuristic and whose value is 1 if edge h is in the �nal cutset returned by the

algorithm and 0 otherwise. Because assigning v to Set

0

breaks h then the expected

value E[x

h

jv ! Set

0

] = 1. On the other side E[x

h

jv ! Set

1

] = 1�

1

2

jhj

f

�1

. Thus

g

h

(v) = g

h

(v; 1) = E[x

h

jv ! Set

0

]� E[x

h

jv ! Set

1

] =

1

2

jhj

f

�1

.

This greedy scheme is not to be confused with the probability-based approach

proposed by Dutt and Deng [5] in the framework of iterative-improvementmethods.

It is of interest to observe that rough estimates of probabilities to end up in the

di�erent sets are useful in both algorithms to greatly improve the performance.

In order to consider in more detail the e�ect of this probabilistic strategy we

consider also a version called (k)-Likelihood Greedy, in which the gain is set to zero

if the number of free nodes in an hyperedge is greater than k.

In Table 3 the three columns in addition to that for FM (that is always reported

to ease the comparison) list the results obtained by the (3)-Likelihood Greedy,

(10)-Likelihood Greedy, and the Likelihood Greedy without limitations on the size

of the hyperarcs. When k increases in (k)-Likelihood Greedy the performance

improves rapidly at the beginning (k = 2; 3) and then reaches a \performance

plateau", explained by the fact that hyperedges with large number of nodes are

rare in the benchmark. When one considers the average values, the performance

of the Likelihood Greedy scheme without limitations is in general better than that
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Graph Fiduccia Greedy (Likelihood) Greedy + Fiduccia Perf. Ratio

Min Ave (Sdev) Min Ave (Sdev) Min Ave (Sdev) Min / \Best"

baluP 30 66.3 (18.6) 29 51.4 (14.1) 27 32.9 (7.5) 1

p1 47 74.9 (13.7) 63 82.9 (11.0) 47 69.5 (8.4) 1

bm1 49 75.8 (14.9) 62 86.2 (9.9) 48 72.9 (9.0) 1.02

t4 80 135.6 (25.4) 67 104.4 (19.8) 60 89.0 (14.5) 1.25

t3 62 108.7 (22.1) 60 93.9 (25.7) 60 82.2 ( 17.9) 1.05

t2 124 175.5 (24.2) 103 141.4 (18.1) 94 127.0 (16.8) 1.08

t6 60 91.0 (14.8) 67 84.9 (9.6) 60 76.5 (8.7) 1

structP 41 55.4 (8.6) 46 82.3 (21.7) 41 57.1 (9.0) 1.24

t5 104 179.4 (35.6) 76 127.0 (22.4) 74 102.2 (16.6) 1.04

19ks 130 178.9 (26.8) 165 225.1 (27.4) 127 181.3 (21.9) 1.22

p2 182 278.5 (40.3) 222 307.5 (40.1) 171 246.7 (34.4) 1.23

s9234P 51 89.9 (25.2) 63 129.5 (28.1) 49 106.5 (28.5) 1.22

biomedP 83 126.5 (40.1) 91 159.6 (44.1) 84 120.5 (33.9) 1.01

s13207P 78 126.2 (21.3) 97 151.0 (17.3) 91 128.2 (16.2) 1.71

s15850P 104 184.0 (29.4) 92 131.7 (26.2) 76 117.3 (24.7) 1.80

industry2 264 602.1 (161.8) 310 768.2 (166.4) 216 517.2 (128.0) 1.28

industry3 263 484.6 (161.0) 334 819.0 (341.1) 253 555.9 (223.2) 1.04

s35932 85 203.5 (53.7) 73 103.6 (33.9) 73 101.6 (29.5) 1.78

s38584 63 258.8 (120.3) 73 202.6 (74.6) 56 138.8 (59.3) 1.19

avq.small 343 620.3 (116.3) 241 513.3 (73.1) 220 474.6 (79.7) 1.73

s38417 147 368.0 (92.3) 74 143.6 (24.8) 68 128.8 (22.5) 1.36

avq.large 373 759.3 (123.9) 382 567.1 (87.4) 270 514.1 (70.4) 2.12

golem3 2175 3217.9 (304.0) 2405 3009.5 (313.4) 1633 2367.2 (265.7) 1.14

Table 4. FM starting from Likelihood Greedy solution

of Weighted Greedy. On the contrary, when one considers the minimum values,

some of the advantage is lost, and Weighted Greedy obtains superior results in

about 50% of the cases. This e�ect is caused by the smaller standard deviation of

results obtained by Likelihood Greedy: a more accurate selection of the node to be

added improves the average results but decreases the amount of \diversi�cation."

In the last columns of Table 3 a bold value indicates that FM results are beaten

or duplicated. Let us note that the performance is particularly signi�cant if one

considers that the CPU times requires by the Likelihood Greedy scheme are less

than those required by FM, in some cases by a large factor, see Table 5.

5. Fiduccia-Mattheyses starting from our greedy solutions

Because greedy schemes are quite e�ective and fast, it is worth considering the

solution quality obtained if one runs the Fiduccia-Mattheyses algorithm starting

from a solution generated by a greedy scheme instead that from a random partition.

Table 4 displays the results obtained by executing the Fiduccia-Mattheyses

procedure starting from a solution generated by the Likelihood Greedy heuristic. In

addition, the last column shows the \performance ratio" of the combination, de�ned

as the \Min" value (obtained in the 100 runs) divided by the \Best" heuristic value

of Table 1.

6. Implementation and computational complexity

A main contribution of Fiduccia and Mattheyses [7] was the use of the now

standard buckets data structure: nodes with a same gain are collected into the
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same bucket, so that the nodes with maximum (or minimum) gain values are im-

mediately available. Motivated by the results in [8], our buckets are implemented

as doubly linked lists and we con�rmed experimentally that the following policy is

most convenient: when g(v; i) increases then v is inserted at the beginning of the

bucket corresponding to the new value; when g(v; i) decreases then v is inserted

at the end of the new bucket. When we are extracting a node of maximum gain

(for insertion into Set

0

or Set

1

) then we take the �rst node in the corresponding

bucket. For a consistent scheme the above policy translates as follows: when g(v)

is increasing then v is inserted at the beginning of the bucket corresponding to the

new value; when g(v) is decreasing then v is inserted at the end of the new bucket.

When we are extracting a node of maximum gain (for insertion into Set

1

) then

we take the �rst node in the bucket of maximum gain; when we extract a node of

minimum gain (for insertion into Set

0

) then we take the last node in the bucket of

minimum gain nodes. As suggested in [8], the randomization is introduced by per-

muting the nodes randomly at the beginning of the algorithm, just before insertion

into the buckets. The remaining steps of the algorithms are deterministic with only

one exception: when both sides of the partition contain at least min size nodes and

the maximum gains achievable by inserting into Set

0

and into Set

1

are the same,

then we choose at random and with equal probability whether to perform the next

insertion into Set

0

or into Set

1

.

For the additional implementational details it is convenient to distinguish be-

tween the various schemes considered, as it is done in the next two subsections.

6.1. �f Greedy and Critical Edges Greedy. Given an hypergraphH(V;E),

the cardinality jej of an edge e 2 E is the number of nodes contained in e. We denote

by card(H) the maximum cardinality of an edge in E. Let p denote the number of

pins in the hypergraph, that is p =

P

e2E

jej. The degree of node v is the number

of hyperedges containing v. We denote by deg(H) the maximum degree of a node

in H.

Storing an hypergraph requires an amount of memory which is linear in p, the

number of pins. The time needed to input the hypergraph is hence �(p). We will

show that �f and Critical Edges Greedy require �(p) time to return a partition

together with its cut value. One cannot ask for more, because computing the cut

value of a given partition requires �(p) time on its own.

Let us denote by 
 the range of di�erent possible gain values during execu-

tion. Let us note that the value of 
 depends on the single greedy scheme under

consideration. In particular, both in �f Greedy and Critical Edges Greedy, the

gain of node v is an integer with absolute value bounded by the degree of node

v, hence 
 � 2 deg(H) + 1. This allows for the standard buckets data structure,

the one introduced by Fiduccia and Mattheyses [7]. In particular, buckets for all

possible gain values are allocated, together with two additional arrays. The �rst

stores for each node v the gain of v (and hence which bucket contains v). The

second records the position of v inside the bucket associated to g(v). This ensemble

can be thought of as a two-coordinate system which results in an e�cient (constant

time) implementation of the needed operations. We refer to [7, 8, 2] and [1] for

a detailed introduction to the standard use of buckets. Let us only mention that

the data structure permits to update the gains of the nodes in constant time while

keeping the buckets of minimumand maximumgains always at disposal. In partic-

ular, choosing the next node to be �xed (the �rst or last node into the minimum or
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maximum gain bucket) is a constant time operation whose cost can be considered

as O(jV j) for the overall execution. Therefore it remains to bound the complexity

of updating the gains. As we said above the gain of node v can be seen as the sum

of many terms, one for every hyperedge containing v:

gain(v) =

X

h3v

g

h

(v)

Moreover, let us note that g

h

(v

1

) and g

h

(v

2

) have the same value for any two free

nodes v

1

; v

2

2 h. When this common value g

h

(:) changes, we say that edge h

changes status. Each time a node is �xed we must look at all edges h contain-

ing v and check if they change their status. If this happens then the gain values of

all free nodes in hmust be updated. In detail, the following operations are executed:

1. for each node v

2. �x v either to 0 or 1

3. for each edge h containing v

4. if h changes status by �xing v then

5. update the gain of each free node in h.

In the case of �f Greedy each edge h undergoes one or two status changes:

when a �rst node of h is �xed (either to 0 or 1) and when h gets eventually broken.

Thus the total number of gain updates is �(p).

In the case of Critical Edges Greedy each edge h undergoes at most one status

change, if it eventually becomes 0-critical or 1-critical. However when this happens

h contains precisely one free node and hence the total number of gain updates is

O(jEj).

Let us now consider the computational complexity cause by the control struc-

ture in lines 1. | 4. For each edge h we store jhj

0

, jhj

1

and jhj

f

. Each time we

test \if h changes status" we �rst update the values of jhj

0

, jhj

1

and jhj

f

. From the

knowledge of jhj

0

, jhj

1

and jhj

f

we can readily decide if h gets broken or �xed to

either 0 or 1 (�f Greedy). We can also check if h becomes critical (Critical Edges

Greedy). We conclude that testing \if h changes status" requires constant time in

all three schemes. The cost caused by the control structure of lines 1. | 4. is

therefore �(p). To summarize, the complexity of �f and Critical Edges Greedy is

�(p).

The above asymptotic complexity analysis is complemented by the measured

average PU times of the di�erent greedy schemes in Table 5, where the e�ects of

non-asymptotic terms is also visible.

6.2. Weighted Greedy and Likelihood Greedy. The situation is signif-

icantly di�erent when considering Weighted Greedy and Likelihood Greedy. In

fact, standard buckets permit to update the gains of the nodes in constant time if

the gain values are integers of bounded value. If this is not the case, then binary

heaps can be used to store the gain values. Our implementation of Weighted and

Likelihood Greedy employs a binary heap structure. In particular, the binary heap

template \sortseq" from LEDA [17] has been used. Here, the amortized time cost

for a single bucket operation (node update, extract max or min) is O(log b), where

b is the maximumnumber of buckets ever contained in the list. Obviously b � jV j.
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Graph Fiduccia �f Critical Weighted Likely(3) Likely(10) Likely Likely + Fid

Ave Ave Ave Ave Ave Ave Ave Ave

baluP 0.049 0.012 0.008 0.014 0.007 0.042 0.054 0.083

p1 0.071 0.013 0.005 0.016 0.008 0.040 0.053 0.082

bm1 0.072 0.011 0.008 0.017 0.008 0.043 0.054 0.091

t4 0.182 0.027 0.010 0.045 0.016 0.209 0.151 0.226

t3 0.259 0.027 0.013 0.085 0.015 0.190 0.237 0.302

t2 0.200 0.027 0.012 0.042 0.018 0.207 0.129 0.211

t6 0.270 0.028 0.013 0.051 0.017 0.049 0.212 0.288

structP 0.208 0.027 0.014 0.028 0.019 0.043 0.059 0.172

t5 0.433 0.048 0.017 0.079 0.024 0.238 0.277 0.406

19ks 0.648 0.049 0.023 0.116 0.027 0.084 0.428 0.701

p2 0.619 0.050 0.021 0.081 0.029 0.088 0.327 0.583

s9234P 1.302 0.100 0.049 0.073 0.054 0.093 0.175 0.605

biomedP 1.750 0.127 0.049 0.140 0.057 0.123 0.460 1.081

s13207P 1.960 0.159 0.081 0.121 0.088 0.138 0.294 0.966

s15850P 2.207 0.194 0.101 0.144 0.113 0.179 0.377 0.895

industry2 4.323 0.310 0.128 0.945 0.164 0.343 3.134 4.263

industry3 4.202 0.429 0.171 0.407 0.229 0.444 1.493 3.748

s35932 6.052 0.387 0.169 0.385 0.193 0.315 0.578 1.097

s38584 6.284 0.489 0.226 0.455 0.247 0.421 1.386 2.995

avq.small 7.943 0.547 0.216 1.530 0.250 0.422 5.772 7.079

s38417 5.977 0.511 0.261 0.409 0.262 0.415 1.014 2.430

avq.large 8.632 0.612 0.259 1.686 0.292 0.490 8.181 8.283

golem3 43.129 3.072 1.676 2.254 2.806 4.422 5.250 39.729

Table 5. Average CPU times obtained for the di�erent algorithms

Not only the cost of updating a single gain value is now O(log jV j) as discussed

before, but the total number of gain updates increases.

The crucial point is that in these greedy schemes edges change status each

time one of their nodes is �xed. For any edge h, this happens precisely jhj times,

as many as the nodes in h. When edge h changes status, we update the gain of at

most jhj nodes. The total number of gain updates is therefore �(

P

h2E(H)

jhj

2

).

The complexity of these greedy schemes is therefore O(

P

h2E(H)

jhj

2

log jV j).

6.3. CPU times. The above described computational complexities agree in a

qualitative way with the measured CPU times, although the non-asymptotic terms

in the complexity functions are still observable for the small size problems. In

particular, the terms proportional to jV j, the number of nodes, are not negligible

with respect to the higher order terms.

When one analyzes the computation times, see Table 6.3, one observes a roughly

comparable (and in some cases smaller) average computation times for the combined

option (Likelihood Greedy followed by Fiduccia-Mattheyses) than for MF starting

from random solutions, especially for the larger graphs. This phenomenon is due to

the fact that, while our greedy schemes are not much more expensive than what is

required for a random assignment and function evaluation, the time subsequently

spent in the Fiduccia-Mattheyses re�nement phase tends to be smaller if one starts

from a reasonably good initial partition. Let us remember that, when the average

and minimum values of the combined option are considered, the results are better

than those of FM in most cases, as it is shown in Table 4.
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7. Conclusions

Motivated by a previous success with some greedy heuristics for the graph

partitioning problem [3, 2], we investigated in this paper the behavior of a greedy

approach to the hypergraph partitioning problem.

The conclusions to be derived from our experimental tests are that these tech-

niques are not competitive with the state of the art, that is given by multi-level

algorithms especially tuned to the hypergraph partitioning instances of interest for

VLSI applications. The best values obtained are in most cases within 20-30% but

in some cases up to two times larger than the best heuristic values.

Nonetheless, two advantages of our greedy schemes against more sophisticated

methods are simplicity and low computational complexity. More surprisingly, if we

look at the quality of the best solution over independent repetitions and within

a same amount of allotted CPU time, some of our greedy schemes compare well

against heuristics which have been the state of the art until some years ago, in

particular the Fiduccia-Mattheyses algorithm. The use of independent repetitions

is also at the basis of the popular \greedy randomized adaptive search procedure"

(GRASP) approach [15]. The algorithms considered in this paper are simpler, be-

cause no criteria for the construction of candidate lists is considered, beyond the

criterion given by having the same gain values (ties). Even the average quality of so-

lutions returned after a single run could be of interest for some applications, consid-

ering that the time requirements are in some cases comparable with those required

for a random assignment plus objective function (cut value) evaluation. Moreover,

our schemes can be employed to produce initial partitions for improvement-based

heuristics. For example, we compared the classical Fiduccia-Mattheyses heuristic,

starting from a random initial solution, against the same heuristic, but starting

from solutions produced by a greedy scheme. While the computation time of the

two algorithms is roughly the same, the improvement in terms of solution quality

is signi�cant.

Of course, the present work is a preliminary investigation. The next step is

to integrate our proposed greedy techniques into state-of-the-art multi-level tech-

niques.
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