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Abstract. While comparing results on benchmark functions is a widely used
practice to demonstrate the competitiveness of global optimization algorithms,
fixed benchmarks can lead to a negative data mining process. The motivated re-
searcher can “torture” the algorithm choices and parameters until the final de-
signed algorithm “screams out loud” positive results for the specific benchmark.
To avoid this negative effect, the GENOPT contest benchmarks are based on
randomized function generators, designed for scientific experiments, with fixed
statistical characteristics but individual variation of the generated instances. The
generators are available to participants for off-line tests and online tuning schemes,
but the final competition is based on random seeds communicated in the last
phase through a cooperative process. A scientific presentation and discussion of
the methods and results is part of a dedicated workshop at the LION 10 confer-
ence. The GENOPT challenge has the following goals:
Scientific learning and dynamic scoring The challenge is a joint, continued learn-

ing effort. Non-experts are encouraged to enter, see preliminary results, learn
from their peers.

Open results Results are publicly visible, the better techniques are presented
in scientific publications, benchmark functions remain available for future
experimentation.

Diversity of approach A dangerous habit of some communities is to encourage
only internal comparisons: GA against GA, PSO versus PSO. . . On the con-
trary, the larger the diversity of approach, the faster the scientific progress.

Seamless participation Effort in participating in the challenge is minimized, so
that a researcher can concentrate on producing novel research.

We present the detailed design of the challenge.

1 Objectives of GENOPT

In this short document we summarize the main motivations for organizing GENOPT
with some representative papers, without any ambition of completeness.

Experimental analysis of algorithms is essential It is now clear that algorithm de-
sign for the global optimization of many problems can profit from scientific ex-
perimentation in a way similar to that of more traditional sciences like Physics.
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In fact, the last twenty-thirty years of Computer Science research produced an
abundance of negative results about the possibility to solve many problems ex-
actly within acceptable (polynomial) computational times [1]. In some cases, even
a guaranteed (worst-case) approximation for some problem is intractable.
Heuristics, methods without formal guarantees of convergence in acceptable CPU
times, passed from being considered “social pariahs in the algorithmic society” to
the only practical way of delivering improving solutions.
Most theoretical results about global optimization are of limited practical applica-
bility, limited to special problems and specific - often unrealistic - assumptions. As
an example, asymptotic convergence - the Holy Grail of global optimization - is
easy to obtain for every method by adding some stochasticity[2] (like the genera-
tion of a random point with uniform probability from time to time) but it can be
painfully slow and frankly irrelevant for the practitioners.
An experimental approach to algorithmics is advocated in [3]. Some software, tests
and applications of global optimization are discussed for example in [4, 5].
Luckily, the hype surrounding magic general-purpose optimization strategies has
disappeared. A “no free lunch” theorem [6] states that if an algorithm performs well
on a certain class of problems then it necessarily pays for that with degraded perfor-
mance on the set of all remaining problems. Only an appropriate matching between
the characteristics of a problem (or of a specific instance) and the characteristics
of an algorithm can lead to efficient and effective results. If the structural charac-
teristics of the instance are not known a priori, learning the relevant features in
real-time and reacting by self-tuning algorithm parameters is a possible approach,
as proposed in the Reactive Search Optimization (RSO) framework [7]. Examples
of massive comparisons of complete global optimization solvers are [8, 9].

Scientific experimentation is different from pure horse racing Citing from [10] if “the
whole affair is organized around an algorithmic race whose outcome determines
the fame and fate of the contestants”, researchers are wasting time. Scientific ex-
perimentation is much more than pure competition. According to[11], it requires a
clear definition of the goals of the experiments, a careful design of the experiments
and measures, an analysis leading to insight (understanding). Reproducibility is an-
other essential scientific ingredient: the experiments must be reproducible without
resorting to the mind and expertise of a specific researcher. In addition, suitably pre-
processed and normalized results, like the performance profiles mentioned in [12],
are critical to convey meaning. Tons of tables should be digested by the intelligent
researcher to distill the novel discoveries. Make meaning!

Randomized function generators designed for experiments If test functions are fixed
for a long time, motivated researchers will elicit reasonable results even from the
poorest algorithm, though extensive hand-made parameter and algorithm tuning.
To avoid this incestuous relationship between test problems, algorithms and re-
searchers, randomized generators can help to distinguish between a tuning (learn-
ing) phase and a testing (generalization) phase. All contributors to GENOPT have
been asked to set their solver meta-parameters just once for the entire class of test
models to be solved as a batch. Self-tuning is of course allowed but without any
human intervention.



Some papers discussing function generators intended for experiments are for exam-
ple: [13] (with a tentative qualitative classification of test problems), [14] (focusing
on the inspiring multi-dimensional scaling via stress minimization problem), [15]
(simple functions with controllable smoothness, number and positions of local min-
ima).
As part of the GENOPT challenge, generators are provided as software with appro-
priate wrappers for different programming languages; in particular, [16] (functions
with known minima and radius of attraction). A generator based on Radial Basis
Functions to simulate structure at different scales [17] will be considered in future
competitions.

Competition and collaboration can be combined Competition and prizes for the ad-
vancement of science have a long tradition. The Longitude reward was offered by
the British government for a simple and practical method for the precise determina-
tion of a ship’s longitude at sea in 1714. More recently, a start-up company (Kaggle)
exploits the concept of “crowdsourcing” in a novel way by organizing competitions
in machine learning [18]. Prizes are even considered as a serious alternative to the
patent system.
Our GENOPT challenge offers only symbolic prizes and can be considered as a
sport event where all participants are gaining knowledge and advancing the state of
the art, also by mutual collaboration and interaction. A deeper understanding of the
relationship between problem/instance structure and innovative algorithms is the
real prize we aim at.

2 Test functions

This section describes the final phase of the contest. Functions to be optimized are
broadly divided into three function families: GKLS, conditioned transforms of classical
benchmarks, and composition of classical benchmarks.

Every family is divided into (at least) six function types, which differ by their an-
alytical definition and by the number of dimensions. Functions belonging to the same
type share most properties and can be assumed to have the same difficulty.

Finally, every function type of every family is realized into an unlimited number of
function instances which differ by some randomly generated parameters. In particular,
every instance has a randomly generated offset c ∈ [−1, 1] added to the function’s
output in order to make the global minimum value unpredictable.

2.1 GKLS

The first family of functions is obtained by the GKLS generator [16], a procedure for
generating three types (non-differentiable, continuously differentiable, and twice con-
tinuously differentiable) of classes of test functions with known local and global minima
for multiextremal multidimensional box-constrained global optimization.

The six function types in this family are:

– Continuous, non differentiable, D = 10, 30;



– Continuously differentiable, D = 10, 30;
– Twice differentiable, D = 10, 30.

The other parameters are fixed:

– number of minima n = 5;
– radius of global minimum basin r = 1/3;
– distance of global minimizer r = 2/3;
– global minimum (before offsets are applied) m = −1.

Individual instances differ by the randomly generated positions of minima and by the
value of the output offset c.

2.2 Conditioned transforms of classical benchmarks

The second family of functions is based on classical continuous optimization bench-
marks, of differing difficulty, with an initial mildly-conditioned transform that stretches
individual directions by factors up to 3, or contracts them by factors up to 1/3 with an
overall condition number equal to 9. Six different function types are proposed:

– Rosenbrock (unimodal, narrowing bending valley), D = 10, 30;
– Rastrigin (strongly multimodal), D = 10, 30;
– Zakharov, (unimodal) D = 10, 30.

Input x is subject to a transform, different for every instance,

x′ =Mx+ x0

where x0 ∈ [−0.1, 0.1]D is a small random translation (with the guarantee that the
global minimum will be within the definition interval) and M is an orthogonal (not
normal) matrix with condition number equal to 100 thus obtained:

M = XTΛX,

where X is an orthonormal random matrix (obtained by applying the Householder or
Gram-Schmidt procedure to a set of random vectors), Λ = diag(λ1, . . . λD) and

λi = 32
D−i
D−1−1,

so that λ1 = 10, λD = 0.1, and all eigenvalues are (logarithmically) equally spaced.
Instances differ by the transform parameters M , x0 and by the output offset c.

2.3 Composite functions

The third function family is obtained by composing the same continuous optimization
benchmarks, generating six different function types, three having D = 10, the other
three having D = 30. Every function type is built by randomly selecting n classical
functions f1, . . . , fn from the following set:
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Fig. 1. Composition of functions

– Goldstein-Price, Df = 2;
– Hartmann, Df = 3; 6;
– Rosenbrock, Df = rand(3, D/2);
– Rastrigin, Df = rand(3, D/2);
– Sphere, Df = rand(3, D/2);
– Zakharov, Df = rand(3, D/2).

The sum of the function dimensionalitiesDf1 , . . . , Dfn must be such that
∑

iDfi = D.
Every instance of the same type corresponds to the same choice of basis functions.

Input x is subject to a rototranslation, different for every instance:

x′ = Ux+ x0

where U is a random orthonormal matrix (obtained by applying Householder or Gram-
Schmidt to a random set of vectors) and x0 ∈ [−0.1, 0.1]D is a small random transla-
tion. The instance value is computed as

f(x) = c+

n∑
i=1

fi(x
′
bi , . . . , x

′
bi+Dfi

−1),

where bi =
∑i−1

j=1Dfj , as shown in Fig. 1.

3 Competition evaluation

The set of function types used in this phase of the competition is given in Table 1.
A function instance is identified by a pair of numbers: its type index (first column in
Table 1) and a positive integer seed. A submission is generated by running the opti-
mization algorithm on 100 instances (with seed from 1 to 100) for the first 18 function
types (index from 0 to 17) and collecting the 1800 report files into a zip folder.



Table 1. List of function types used in the competition. Note that the Composite family
is virtually infinite, with even type indexes 12, 14, . . . corresponding to dimension 10
and odd indexes 13, 15, . . . corresponding to dimension 30. Indexes 0, . . . , 17 are used
in the initial phase; the composite indexes for the final phase are defined in Section 3.3.

Index Family Type Dimension
0

GKLS

non-differentiable
10

1 30
2

continuously differentiable
10

3 30
4

twice differentiable
10

5 30
6

Conditioned

Rosenbrock
10

7 30
8

Rastrigin
10

9 30
10

Zakharov
10

11 30
12 + 2n

Composite
10

13 + 2n 30

3.1 Use of the random number generator

The Mersenne Twister RNG, as implemented in the GKLS source, is used to generate
all parameters in the function library.

For the GKLS family, the RNG is initialized with the provided seed, a GKLS in-
stance is created, and finally the value offset c is generated.

For the Conditioned transform family, the RNG is initialized with the provided seed,
and the transform parameters M , x0 and c is generated.

For the Composite family, the RNG is initialized with the function index in order
to generate the random selection of functions and dimensions. Then the RNG is re-
initialized with the provided seed to generate the rototranslation parameters U and x0

and the value offset c.

3.2 Evaluation criteria

The main problem of evaluating heuristics on different target functions is the risk of
“comparing apples and oranges:” some functions could dominate the score system just
because they are easier than expected (or harder, or with a more or less needle-like
minimum). To avoid this, the decision was made to never compare values coming from
different function types.

The GENOPT classification mechanism has been designed as a ranked voting sys-
tem: many different rank orders among the various submissions are built according to
various criteria, with the condition that every criterion be internal to one function type.
These “local” rank orders are then combined into the final, global ranking.

Ranking criteria are based on two measures: record at checkpoints, and cumula-
tive performance profiles.



Record at Checkpoints The first criterion compares different submissions based on
their “typical” performance on a given function type within a given number of function
evaluations.

For each of the 18 function types, 4 checkpoints are fixed at 1K, 10K, 100K, and 1M
evaluations. For each checkpoint, submissions are ranked on the basis of their median
record value across the 100 instances.

The median has been chosen for robustness: the occurrence of a very bad, although
very rare, outlier might disrupt an arithmetic mean; moreover, the logarithmic nature of
the problem (positive error minimization) does not match a linear scale very well, and
a geometric mean would suffer from the opposite problem of having very good outliers
condition an undeserved positive result.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  100  1000  10000  100000  1x106

S
u
cc

e
ss

 r
a
ti

o

Evaluations

Fig. 2. Cumulative Performance profile sampled at checkpoints i · 10j .

Cumulative Performance Profile Define a search to be successful when it finds a point
in the domain whose value is within ε = 10−5 from the global minimum value. The
Cumulative Performance Profile shows the ratio of searches that are successful after a
given number of iterations. In detail:

– let f be one of the 18 function types,
– let fi be its seeded instances (i = 1, . . . , 100);
– let xij be the jth evaluation requested by the search algorithm during the optimiza-

tion of function fi;



– let flag sij be 1 iff the optimization of fi is successful within evaluation j:

sij =

{
1 if mink=1,...,j fi(xik) < min fi + ε

0 otherwise;

– finally, let the success ratio within the jth iteration over all instances be

rj =

∑100
i=1 sij
100

.

Figure 2 shows a possible Cumulative Performance diagram for a given function type.
Success rate is sampled at evaluation numbers in the form a · 10b with a = 1, . . . , 9 and
b = 1, . . . , 5, and for 106. More formally, sampling points are

pn = (1 + n%9) · 101+b
n
9 c, n = 0, . . . , 45

We compute a first-order approximation of the area below the OC curve with a loga-
rithmic horizontal coordinate:

A ≈
45∑

n=1

spn

(
log pn − log pn−1),

which is precisely the area below the stepwise curve in Fig. 2
Submissions are ranked separately on the basis of the OC area for each function

type.

Combination of the local criteria Every function type, represented by 100 instances
in each submission, provides five separate rankings (four based on the record value at
each checkpoint, one on the Cumulative Performance diagram area), so a total number
of 90 rank orders are provided.

In order to ensure a reasonably fair treatment of all such criteria, and for simplic-
ity’s sake, the final order is distilled by sorting submissions according to their average
position across all local rank orders.

Please note that the chosen combination criterion (just like any rank-based system)
can sometimes violate the “Independence of Irrelevant Alternatives” principle: in some
cases, adding or removing a submission might change the order of existing ones.

3.3 Final phase

The preliminary phase of the competition ended on March 15 2016 at 24:00 GMT. The
final phase of the competition will started at the same moment and remained open to all
users who made at least one submission in the previous phase.

In final phase, contestants have been asked not to fine tune their algorithms anymore,
but to reapply the same configuration used in the previous phase. A random seed S0

has been generated in a collaborative way described later, and has been published on
the website. Contestants have been asked to run their optimization algorithms on 100
instances (with seeds S0, . . . , S0 + 99) of function types 0, . . . , 11 and S0, . . . , S0 + 5
(i.e., different function compositions will be used wrt the previous phase).

The same ranking criteria as in the previous phase have been used.



Final seed generation To ensure fairness, the following collaborative, nothing-up-my-
sleeves seed generation procedure has been followed:

– every user i provides a positive integer of his choice 1 ≤ pi ≤ 1000, with the
possibility of checking and/or modifying it anytime These values are frozen on a
specific moment;

– at the same moment, the base seed for the final test has been computed as

S0 = SHA-256

(∑
i

pi

)
%231,

i.e., the least-significant 31 bits of the SHA-256 hash of the sum of the user-
submitted values;

– the value of S0 and the user-submitted numbers pi have been published, so that ev-
ery user has been able to check his own choice and replicate the generation process.

Since the organizers can in principle know everybody else’s numbers, and could there-
fore manipulate the system with their own submitted values, the organizers do not sub-
mit a number (or, equivalently, they submit zero).

4 Procedure for participating

To participate, the rules for the contestants asked each user to:

– Register at

http://genopt.org/

to receive account credentials.
– Download the latest version of the genopt library, available at the same page;

link their optimization code to the provided API by following the examples and the
documentation included in the package (various OSs and languages are supported).

– Execute one optimization run for 1,000,000 function evaluations for every function
type from 0 to 17 inclusive and for every seed from 1 to 100 inclusive. Option-
ally, the 1,000,000 evaluations limit can be set by the appropriate function in the
genopt library.

– Every run generates a report file, for a total of 18× 100 = 1800 files. The user had
to compress all report files as a ZIP file.

– Login and upload the ZIP file.

No limits were enforced on the number of submissions per user. Users could delete their
own submissions at any time.

5 Awards

Contestants competed for the following award categories: High Jump, Target Shoot-
ing, and Biathlon. Winners have been celebrated at the LION Conference and the re-
sults and awards remain publicly visible in the GENOPT website http://genopt.

http://genopt.org/
http://genopt.org/


org/. More than 100 submissions were sent from the beginning of the competition,
with about 40 (selected by the user and by the organizers) remaining on the public
website.

The High Jump prize, for the submission that typically jumps higher (lower, actu-
ally: this is a minimization contest) than the others, according to the “Record at Check-
points” criterion described in Sec. 3.2, has been awarded to [19].

The Target Shooting prize for the submission whose runs typically achieve higher
success rates in the quest for the true global minimum, according to the “Cumulative
Performance Profile” criterion described in Sec. 3.2, has been awarded to [20].

The Biathlon prize for the submission achieving the highest cumulate ranking in
the two previous categories, as described in Sec. 3.2, has been awarded to [19].

The scientific results obtained by the winners are described in the cited publications.
Given the enthusiam, dedication, and results generated in the competition we plan to
revise the system and propose additional competitions based on the same principles in
the next years.
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