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Abstract

This paper presentsreemory-based Reactive Affine Shaker (M-RASH) algo-
rithm for global optimization. The Reactive Affine Shakerais adaptive search
algorithm based only on the function values. M-RASH is areesgion of RASH
in which good starting points to RASH are suggested onlineidiyig Bayesian
Locally Weighted Regression (B-LWR). Both techniques ueermemory about
the previous history of the search to guide the future exion but in very differ-
ent ways. RASH compiles the previous experience into a leeatch area where
sample points are drawn, while locally-weighted regressiaves the entire previ-
ous history to be mined extensively when an additional sampgint is generated.
Because of the high computational cost related to the B-L\Wide it is applied
only to evaluate the potential of an initial point for a losalarch run. The exper-
imental results, focussed onto the case when the dominamputational cost is
the evaluation of the target function, show that M-RASH is indeed capable of
leading to good results for a smaller number of function wastbns.

1 Introduction

Like furniture is in the searching look of a carpenter wadkin a forest, technology
is in the eyes of the computer scientist both as an end (@lging optimization and
planning problems) and as a means by which larger and largirices can be solved.
Itis now a truism that the growing availability of massive@mts of memory, starting
from the eighties, opened new windows of opportunity for rogrrbased optimization
techniques, in particular memory-based heuristics. Thaetying assumption of a
rich internal structure of most relevant optimization sskakes techniques capable of
graduallylearning that structure potentially more powerful and effectiveth@emory-
less techniques. Notable examples are the upattdrn databases originally proposed
by [6] to solve tile puzzles. In these problems, the finakstaknown and the sequence
of moves to reach it, is to be determined. The database istagdrain a lower bound
on the cost to reach the goal from a given state in the seamtesjpy looking up



all possible subgoals, see also [10] for more accurate a&iftésheuristic evaluation
functions.

A different context is that of stochastic local search [8here one aims at mini-
mizing a functionf of discrete or continuous variables. In this case the optiorfig-
uration is not known at the beginning and generating a trajgdy local search in the
configuration space is a way to explore promising configanstaiming at discovering
good local optima. The authors of this paper used histongitiee (or memory-based)
techniques to solve combinatorial problems [3] and comtirsoptimization problems.
The recent publication [2] summarizes the methods and thie applications, while
[1]is dedicated to data structures based on hashing andrdgsats to support history-
sensitive heuristics.

In this small contribution, because of the limited space badause we think it
could offer a different point of view we concentrate on a re@xploration related to
the usage of models based on memory in order to speed up esstophastic search
method denoted as Reactive Affine Shaker proposed in [4]hdridllowing sections
the basic building blocks, the RASH local search heuristid the B-LWR model-
ing technique, are described. Next, a combination of thetéghniques is proposed.
Finally, experimental results on classical optimizatioolpems are discussed.

2 Building blocks

In the following discussion, we make the assumption thatithrminant computational
cost is related to evaluating the target functipmt trial points. This assumption is
justified in many practical applications, for example whiea évaluation off requires
running a lengthy simulation, or even running an indusiplaht and measuring the
output. It is in these cases that the use of memory is worttetfogt and to make
the assumption explicit we will discuss about results ofsthie as a function of the
number off evaluations in the next part of the paper. A more detailedyarsataking
into account the trade-off between the overhead involvatiénusage of memory for
cases when this is not negligible is in preparation and notghin this paper because
of space reasons.

The proposed memory-based technique, M-RASH, is based onmnajor com-
ponents: an efficient local search heuristic, RASH, forabpiinding local minima,
and a statistically sound method, Bayesian Locally-weigiRegression, to model and
predict its global behavior. In this Section we briefly dédsethese two components.

2.1 TheRASH heuristic

The Reactive Affine Shaker Heuristic [4], RASH for short, sedf-tuning local search
algorithm based on the framework proposed in [13], wherenar gnowledge is as-
sumed on the function to be minimized and only evaluatiorsslaitrary values of the
independent variables are allowed. The RASH heuristis taaapidly move towards
better objective values by maintaining and updating a stealirch region”’R around
the current poin.



Function to minimize
Initial point

Search region
Current displacement
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function RASH (f, x)
- R < small istropic set around
while (local termination condition is not met)
 PickA e R¢suchthatc + A,z — A e R
if flx+A) < f(x)
[ x—x+A;
ExtendR alongA
| CenterRonzx
dseif f(x — A) < f(x)
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10. M x—x-A,;

1. ExtendR alongA
12, | CenterRonzx

13. else

1. B ReduceR alongA
. | returnz;

Figure 1: The RASH algorithm

The use of memory in RASH is limited: the entire previousdrigtof the search
(the trajectory of the generated sample points and the meéaunf the evaluations) is
summarized throughdynamic search region, intended to zoom in onto the promising
areas where to find points better than the current best.

The efficiency of RASH lies in the ability to reshape the shaegionR according
to the occurrence or lack of success during the last stepsté@in a certain direction
yields a better objective value, th&is expanded along that direction; it is reduced
otherwise. Therefore, once a promising direction is fouhd,probability that subse-
quent steps will follow the same direction is increased, sgafrch shall proceed more
and more aggressively in that direction until bad resultkice its prevalence. The
algorithm is outlined in Fig. 1.

The algorithm starts with an isotropic search region cextaround the initial point
(line 2). Next, new trail points are repeatedly generatid @). If the resulting point
x + A yields a lower objective value (line 5 and following), théretcurrent position
is updated andR is expanded along the direction &. To increase the probability
of finding a better point, ift + A does not lead to an improvement, also- A is
checked (line 9 and following). If none of the points impretee objective value, then
the search region is reduced along the directioAdfine 14) and the current position
is not updated. This sequence of steps is repeated untibbterenination condition is
verified. Common criteria to terminate the search are thebaurof iterations, the size
of the search region (if too small, it indicates that no psedirection for improvement



f Function to minimize
x, Initial and final position of run
bestPoint, bestValue  Best position found and its value

function Repeat edRASH(f)
™ bestValue «+ +o0
while (overall termination condition is not met)
x < random pointinf domain
x' — RASH(f, x)
if f(x') < bestValue
bestPoint < x

[ bestValue — f(x’)

| return bestPoint
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Figure 2: The Repeated RASH algorithm

can be detected, therefore the system is already close teahrtanimum), a large
number of iterations without further improvement.

To keep an acceptable level of complexity, the search reigiomplemented as a
box defined byl independent vector${ . . . b;), whered is the number of dimensions
of the search domain. Shape modifications are implementeffias transformations
of these vectors, as described in the following equation:

, AAT

The value of is of 1.2 for expansions and 0.8 for compressions of the beagion
respectively. The easiest, although effective, way of mmprg the performance of the
algorithm is to restart the search from a random point as ssdhe local termination
condition is verified, as shown in Fig. 2. This correspondldeing a population of
searchers, each unaware of the others.

2.2 Bayesian Locally Weighted Regression

On the coordinate axis of “amount of memory usage”, RASHsstdya very low level,
while the extreme position is occupied by methods storiegetitire history in memory
aiming at mining it in the most flexible and effective way irder to generate a single
additional trial point.

In particular, Bayesian Locally Weighted Regression [5,7]1denoted as B-LWR,
is characterized aslazy memory-base technique where all points and evaluations are
stored and a specific model is buitt-demand for a specified query point. The usual
power of Bayesian techniques derives from the explicit Sjpation of the modeling
assumptions and parameters (for examplpriar distribution can model our initial
knowledge about the function) and the possibility to modelonly the expected values



but entire probability distributions, so that for examptnfidence intervals can be
derived to quantify the confidence in the expected values.

B-LWR is the second fundamental building block consideeddmplement the
M-RASH heuristic. B-LWR is a learning technique used to @ilmodel out of data
provided, for instance, by a stochastic or noisy functioohsas the outcome of an
experiment.

The B-LWR algorithm relies on a set of sample data {(x1,y1),-- -, (Tn,¥n)}
wherey; € R is the outcome of a stochastic function evaluation on inddpat vari-
ablex; € RY. To predict the outcome of an evaluation on a pairfhamed aquery
point), linear regression is applied to sample points. To enflrcality in the determi-
nation of regression parameters each sample point is &skweight that decreases
with its distance from the query point. A commkernel function used to set the rela-
tionship between weight and distance is

_lzi—all?
w; = € K )
whereK is a parameter measuring the kernel width, i.e. the seitgitiv far sample
points.

The occasional lack of sample points near the query poinidvpase problems
in estimating the regression coefficients with a simpledimmodel. Hence Bayesian
regression is used, where we can specify prior informatimuawhat values the coef-
ficients should have when there is not enough data to detertiném. Bayesian LWR
commonly assumes wide, weak Gaussian prior distributiomefcoefficients of the
regression model and a wide Gamma prior on the inverse ofdise covariance.

The linear regression model with Gaussian neisés

Yi = w?18+€7

where 3 is the vector of parameters of the linear model. Note thatrstemtl is
appended to all input vectoxs to include a constant term in the regression, so that the
dimensionality of all equations is actualliy+ 1. The samples can be collected in a
matrix equation:
y=Xp

whereX is ann x (d + 1) matrix whoseith row isz!" (complemented with a 1 entry
to account for the constant term) agds a vector whoséth element igy;.

The task is to estimate the coefficie@s= (5 . . . B4). The prior assumption ofi
is that it is distributed according to a multivariate Gaaesdf mean 0 and covariance
matrix 3, and the prior assumption anis thatl/0? has a Gamma distribution with
k andf as the shape and scale parameters. Since we use a weightessiag, each
data point and the output response are weighted using Gnassighting function. In
matrix form, the weights for the data points are described ix n diagonal matrix
W = diag(ws, ..., w,). The prior assumes = diag(202, .. .,202) for 3 distribution
andk = 0.8, 8 = 0.001 for Gamma distribution.

The model local to the query poigtis predicted by using the marginal posterior
distribution of 3 whose mean is estimated as

B=E1+XTw2X)"{(XTW?y). 1)



The matrixX~! + XTWW?2X is the weighted covariance matrix, supplemented by the
effect of the3 priors. Its inverse is denoted 3. The variance of the Gaussian noise
based om data points is estimated as

2 _ 20+ (y? — BT XT)W2y
2k 4+ >0 w? '

The estimated covariance matrix of tBalistribution is then calculated as

(20 + (y7 — BEXTYW2y) (! + XTW?2X)

02V5 =

The degrees of freedom are given byt Y"1 , w?. Thus the predicted output
response for the query poigtis

i(q) = 4" B,
while the variance of the mean predicted output is calcdlate
Var(j(q)) = q" Vsqo®. @

3 A global model for alocal search heuristic

Locally Weighted Regression is an efficient way to model Iséstic dependencies,
such as those arising from experimental data. In this Seetmdefine a local search
heuristic as a stochastic function, and show how we use LWWRh@ references to
LWR mean Bayesian-LWR) to model its global behavior and jgtettie position of
good starting points.

3.1 Local search algorithmsas stochastic functions

Let f be a real-valued function defined over a limited domAinc R¢. Let L be

a local optimization heuristic, and I€i; the algorithm obtained by applying to
function f. L, works by starting from an initial poink; € D and generating a
trajectory(zy, ...,z N ), whereN is the number of steps the algorithm performs before
a termination condition is verified. If we treat the initiadipt =, as an independent
variable (i.e., not randomly generated by the algorithrelfitdut fed as a parameter),
the algorithmL ; can be seen as a function mapping the initial point of thedtajy to
the smallest function value found along the trajectory:

Lf:D — R (3)

Note that, sincd. is a stochastic heuristic relying on random choices, thjedtary is
stochastic too, anfl ; must be regarded as a stochastic function.
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Figure 3: Modeling the local search algorithim

3.2 An LWR modd of the stochastic local search transfor mation

The stochastic functiol y models the transformation executed by local search, from
an initial point to the local minimum point in a given attrimct basin. After some
runs of local search have been executed, one begins to derdxeledge about the
structure of the search space, about which region is mampedhich local minima,
and about a possible large-scale structure of the localhmgirshowing the way to the
most promising areas. Of course, the so-called “no freehutieeorems of global
optimization [14] imply that these techniques will not béeefive for general functions
(for sure they will not be effective if the value at one poisiniot related to values at
nearby points), but most optimization problems of realregéare indeed characterized
by a rich structure which can be profitably mined.

The integration proposed in this paper considers the LWRddehthe transforma-
tion executed by, therefore to evaluate the potential of future initial gsito lead
to promising local minima. For each run of the stochasti@al@earch, the memory-
based model will be mined to identify the next initial poi@tther options are possible,
like the consideration of an LWR model for describing thegoral functionf. This
second hypothesis is not considered here because of spacaseand because it leads
to a more CPU-time consuming algorithm, but see [9] for arepehdent preliminary
investigation.

To visualize the effect of thé ; transformation and the related modelling by LWR,
Fig. 3 describes the application of a LWR techniqué fan order to model it. Function
f has three local minima, whose values are represented asi.> andmg, with ms as
the global minimum value. Black dots represent sample ppaithe form(z, L¢(x)),
i.e., each is obtained by generating an initial valydeeding it to the local search al-
gorithm, and retrieving the minimum value f$ffound along the subsequent trajectory.
If the search algorithm makes local moves, as is the caseRiMBH, the sample points
will approximately outline a stepwise function, constaneiery attraction basin cor-
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Figure 4: Modeling the Rastrigin function in 1 dimension



Function to minimize

Domain of f

B-LWR model of L, initially empty
Number of initial sample points in

S g

function BLWR_RASH (f, n)
~ fori—1ton
[ @ < random pointinD
x’ — RASH(f, x)
| g.addSamplePoint#, f(z'))
while (termination condition is not met)
[ « <— RepeatedRASH (g)
x’ — RASH (f, x)
| g.addSamplePoint#, f(x'))
. | return best point found
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Figure 5: The memory-based M-RASH heuristic

responding to a given local minimum. Let's note that the sth@pproximation to
the stepwise function is actually useful to give the aldorta direction to follow to
reach promising areas, while an exact constant model onléteao would not give
such direction hint. The LWR model, shown in thick dasheé liis a smoothed out
version of this stepwise function. Figure 4 shows a pratégample executed on the
1-dimensional Rastrigin function. The sequence of samgpiletp models the trend of
local minima towards the global minimum, situatedzan= 0. Note that the sample
points represent the initial point and the the final functirafue as a result of apply-
ing the local search technique. The error bars indicate éinawce on the predicted
function value using the LWR model.

The LWR model ofL ; (derived in Figs. 3 and 4) is in turn minimized in order to
find the best suitable starting point for the subsequent fub0 as described in the
following Section, where the technique just described diad to the RASH heuristic.

3.3 TheM-RASH Heuristic

Fig. 5 presents the pseudo-code for the M-RASH heuristice gérameters are the
function f to be minimized and the number of initial sample points inrttalel. Since
we are using the Bayesian version of LWR with prior coeffitigistribution, we are
not forced to insert into the model a minimum number of polmfore it becomes
useful.

The model; is initially empty; we assume that it can be evaluated at aygpeint
as a real-valued function (in our C++ implementation, theEVBR model implements
a function interface), and that it can be updated by adding meints by calling the
methody.addSanpl ePoi nt (x, y). The RASH local search algorithm is made avail-
able through the two function calls described in Fig. 1 argl Bi In particular, it is
important to remember that



Table 1: Benchmarks for simulations

Function d | Mathematical Representation
Name

d
Rosenbrock 10 | > (100(zi41 — 27)® + (z; — 1)%)

i=1
d

Rastrigin | 10 Z(m? — 10cos27x; + 10)
i=1

Schaffer | 2 | 0.5 V2 +y?)? 05
' (1.0 4+ 0.001 (22 + y2))?

e RASH (f, x) is a single-run local search which starts at the initiahpai and
outputs the best point found over the functipmintil a termination condition is
verified.

e Repeat ed_RASH(f) allows search to restart as soon as it detects that it i& stuc
at a local minimum. The search shall always start from a rangoint within
D.

Lines 2-5 populate the B-LWR model with a number of samplasoieach of the
form (x, L (x)), by repeatedly generating random points in the domainpvioiig a
RASH trajectory starting from that point (line 4) and stgrihe result according to the
definition (3).

Once the mode} is populated, the algorithm proceeds by alternating modiei-m
mizations and objective function minimizations (lines B-A promising starting point
can be found by minimizing with a multiple-run RASH heuristic starting from a
random point (line 7). The point is used to begin the minimiazatrajectory for f
(line 8). Finally, the result of the optimization run (in tes of initial point, best value
in trajectory) is stored intg in order to refine it for the next run.

Note that optimization runs aimed at functigrare always single: a repeated run
would generate a “broken” trajectory where the final optinhas no relationship with
the initial point in the trajectory, therefore the modeWwould become useless. The
same concern is not valid fgrminimizations.

4 Experimental Results

We compare the performance of Repeated-RASH and M-RASH @mémchmarks
shown in Table 1. Rosenbrock is a unimodal function in the @or-100, 100]¢ with

a long narrow valley and has a global minimum of zero located & )?. Rastrigin
is a multimodal function in the domdin10, 10]¢ with huge number of local minima
and a global minimum of zero at origin. The Schaffer functisra 2-dimensional
maximization function in the range-100, 100]? with a lot of valleys surrounding the
global maximum of 1 af0, 0).

10
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Figure 6: Rosenbrock Function

The termination condition for both Repeated-RASH and M-RiASset to 100000
function evaluations. In M-RASH, we start with = 2 initial sample points. The
termination condition foRASH( line 4) in Fig. 5 is set to 50 function evaluations. The
idea is to feed the model with couple of sample points befoeryjng it to find the
next data points to explore (lines 6—-9). TRepeat edRASH call( line 7) searches
the regression modelfor the optimum point. As the execution BEpeat edRASH
on the model doesn’t add to the function evaluationg oit is run for large number
of iterations to make sure that with a high probability thataptimum point on the
model is achieved. The call ®ASH( line 8) takes the optimum point suggested by the
Repeat edRASH as the starting point for minimizing f. This call is terminated if
RASH fails to improve the optimum value on functigrior a fixed number of consec-
utive steps. Hence, RASH continues to run as long as it istalflad better optimum
values and not stuck at local minimum. In our simulations,tereninate the call to
RASH( line 8) if it doesn’t improve on the optimum value foufud 100 consecutive
steps. The starting point used by RASH along with the bestevidund is then added
to the regression model The above procedure is repeated till the overall termomati
condition of 100000 function evaluations is met.

The algorithms are run for 100 trails and the average optirfaumd along with
standard deviation is plotted against the number of funcéealuations in log-log
scale. The comparison graphs between Repeated-RASH and3HRre shown in
Fig. 6 - 8. The performance of M-RASH is slightly worse at thegjimning but even-

11
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Figure 7: Rastrigin Function

tually better compared to Repeated-RASH for the uni-modaadRbrock function as
shown in Fig. 6. The M-RASH algorithm outperforms Reped®fisH for the two
multimodal functions as shown in Fig. 7 and Fig. 8. This caexy@ained by the struc-
ture of one-dimensional Rastrigin shown in Fig. 4. Once tHANR model is fed with
enough sample points to get a global structure of the functiavill immediately di-
rect the local search algorithm to the data points near thigag/iminimum. In the case
of Repeated-RASH, due to large number of local minima itroffets stuck at them and
thus proceeds slowly towards the global minimum. This is &ge for the Schaffer
function. Thus, M-RASH quickly converges to the areas ctosthe global minimum
for the functions with high local minima where the B-LWR péagn important role in
learning the trend of local minimum and guiding the localrekaRASH technique to
promising areas.

5 Conclusion

We have presented the framework of M-RASH technique withespneliminary re-
sults. M-RASH, which is an integration of B-LWR and RASH teajues, results in
faster convergence and better average optimum values cethftaRepeated-RASH.
There are a number of critical parameters in the B-LWR and RA&hniques which
include the kernel width, the kernel function [12], prior assumptions Brdistribu-

12



M-RASH
Repeated-RASH --------

0.1

0.01

0.001

One minus Avg. Optimum

0.0001

1e-005

4
HH

1e-006 L L :
100 1000 10000 100000

No. of Fn Evals

Figure 8: Schaffer Function

tion, the initial number of sample points the termination conditions of the function
callsRASH andRepeat edRASH and the initial search regioR in RASH algorithm.
Ongoing work not described in this paper because of limifgte and future efforts
will consider the detailed effect of these parameters oreffextiveness of the tech-
nigue.
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