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Abstract This paper proposes a flexible software architecture ferautive multi-
objective optimization, with a user interface for visuadg the results and facilitat-
ing the solution analysis and decision making process.

The architecture is modular, it allows for problem-spedifitensions, and it is
applicable as a post-processing tool for all optimizatiomesnes with a number of
different potential solutions. When the architecture ghtly coupled to a specific
problem-solving or optimization method, effective intetiee schemes where the
final decision maker is in the loop can be developed.

An application to Reactive Search Optimization is presgntésualization and
optimization are connected through user interaction: #e is in the loop and the
system rapidly reacts to user inputs, like specifying a $octianalysis, or prefer-
ences for exploring and intensifying the search in inténgsireas.

The novelty of the visualization approach consists of usewgnt online graph
drawing techniques, with sampling and mental map presgrsthemes, in the
framework of stochastic local search optimization.

Anecdotal results to demonstrate the effectiveness ofgheoach are shown for
some relevant optimization tasks.

1 Introduction

The development of effective and flexible software architexs for integrating
problem-solving and optimization schemes into the ovdradiness organization,
modeling, and decision making process is a subject whichbeesn explored
for many years. The computational power available even tdimme and small
businesses and the development of flexible and rapidly glaple optimization
schemes, often based on stochastic local search and rélatestics, promise a
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new progress in the adoption of formal optimization schetmetarge and small
businesses.

As an example of recent developments, Microsoft introduledolver Founda-
tion framework Ot t p: // ww. sol ver f oundati on. conl ) to eliminate the
divide between “the world of business planning and managemethe front office
staff and the semi-autonomous world of business IT managenyeMIS personnel
drifting slowly away from the ever-changing and evolvinginess objectives.”

Our architecture is highly modular, it allows for probleipesific extensions, and
it is applicable as a post-processing tool for all optimmaschemes producing a
number of different potential solutions. When the architeis tightly coupled to
a specific problem-solving or optimization method, effeetinteractive schemes
where the final decision maker (DM for short) is in the loop bardeveloped.

The effectiveness of visualization is well known in the @iems research and
mathematical programming community [16]. Solving probsanvolves more than
just developing clever algorithms, and giving the optin@lion(s) with minimum
f values. Validating and understanding models, algorittams, data requires ap-
propriate representations. Visualization is crucial tplese optimal solutions, and
to summarize the results. After all, the purpose of mathemlaprogramming is
insight not numbers [11].

The last years have witnessed impressive developmentg iarda of stochas-
tic local search [14] techniques for combinatorial optiatian and in methods at
the boundary between optimization and machine learnirkga.aintelligent opti-
mization and Reactive Search Optimization (RSO) [4], aoiwous search [13],
instance-aware problem-solving [15].

In many cases, the crucial issue is not that of deliveringnhglsisolution, but
that of critically analyzinga mass of tentative solutionghich can easily grow up
to thousands or millions. The set of solutions is often cti@rized by a rich struc-
ture which can be mined to extract useful information. A naltatructure is caused
by the fact that different solutions are chained alorsgarch trajectoryA second
structural element has to do with tfiness landscapehe space of possible con-
figurations is partitioned into attraction basins leadiodocally optimal solutions
under the local search dynamics. Solutions in differerdll@cinima regions often
differ by important structural changedustering solutions according to a similarity
measureconsistent with the local search neighborhood structuceusial to nav-
igate among significantly different solutions. One dealthvei graph with nodes
given by tentative solutions, and edges given by neighbmdhelationships along
the trajectory, or by similarity relationships of two soauts.

The emphasis on providing a flexible product for the final sieci maker is
another driver. The final user does not want to be distracyetethnical details
but he wants to concentrate on using his expertise for aetligent and informed
choice among the large number of possibilities. This cando®raplished ifthe
user remains in the loaghe is analyzing preliminary results, and giving feedback
to the system which can be used for directing the search tantts relevant and
promising regions.
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The contribution described in this paper has a clear focusory state-of-the-art
techniques for visualizing stochastic local search, anghiticular Reactive Search
Optimization results, both at the end of a run, but also wdnilen is in action, to per-
mit user input while optimizing. The visualization techaég focus on presenting
online dynamic graphs, where nodes are candidate solutindssdges (depend-
ing on a user-defined threshold) signal similarity, on @tisg of solutions (with
emphasis on prototypes for the different areas), and onvbleiteon of the search
trajectory.

The intended user is not necessarily an expert in algoréltetails, but a user
who needs a fast, responsive, intuitive, mental-map pveseway of navigating
among a see of solutions. Abstraction through clusterimbtae possibility to give
feedback to the search process are important ways to keeysénén the loop and
encourage him to express in a simple way implicit preferspnet formalizeca
priori in the abstract objective functigf.

In the following sections, Sec. 2 presents a short revievhefrulti-objective
optimization context and of some existing visualizatiochtgiques and Sec. 3 illus-
trates the software architecture. Sec. 4 explains the useendionality-reduction
techniques, Sec. 4.2 illustrates the clustering methaodkSac. 5 discusses the user
interaction and dynamic layout.

2 Visualizing multi-objective optimization problems and reactive
sear ch optimization

Reactive Search Optimization (RSO) [4] advocd&ssning for optimizing by in-
serting a machine learning component into a solution psseghat algorithm se-
lection, adaptation, integration, are done in an automatgg and a comprehensive
solution is delivered to the final user. The diversity of w@sind the dynamicity
which are intrinsic in the real world can be dealt with in afeefive manner. The
interaction with the final user is simplified and made humancomplex technical
questions are asked about parameters but the focus is kepe @pecific instance
and user preferences. In fact, the user wants to maintainat@f the problem def-
inition, including of course hard and soft constraints f@rences, weights. This is
the part which cannot be automated, while he is happy to dedegsues related to
algorithm choices and tuning.

A first application of the above ideas is studied in the tiaddl context of multi-
objective optimization problem (MOOPs). The incompletekiedge about the
problem to be solved is formalized by assuming the knowleafgee set of desir-
able objectives, and ignorance of their detailed combamati

In detail, a MOOP can be stated as:

maximize f(z) = {f1(z), ..., fm(z)} (1)
subject to x e (2)
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wherex € R™ is a vector ofn decision variables{? C R" is thefeasible re-
gion and is typically specified as a set of constraints on the aecigariables;
f : 2 — R™ is made ofm objective functions which need to be jointly max-
imized. Objective vectors are images of decision vectos @m be written as
z = f(x) = {fi(x),..., fm(x)}. The problem is ill-posed whenever objective
functions are conflicting, a situation which typically ocsun the real world. In
these cases, an objective vector is considered optimahi wbits components can
be improved without worsening at least one of the others. Bjeative vectorz is
said todominatez’, denoted ag > z’, if z;, > z; for all k£ and there exists at least
oneh such that;, > z;. A pointz is Pareto optimal if there is no othere {2 such
thatz dominatest. The set of Pareto optimal points is calledreto sefPS). The
corresponding set of Pareto optimal objective vectorslis@¢®areto front(PF).

In particular, we focus olinteractive multi-objective optimization. According
to [20], through interactive MOO the DM is building a conv@t of what is possible
and confronting this knowledge with her preferences thet al/olve.

The assumptions about knowledge and ignorance of the pnablee solved can
be of course generalized. For example, in many cases thsialechaker wants to
actuallyseethe proposed solution (not only the objective values) tadiecThis is
a clear evidence that objectives are not the entire storyadddional opportunities
for learning the real preferences exist. A recent propokahcevolutionary multi-
objective optimization algorithm adapting to the decisioaker is presented in [5].

In this work, after a brief presentation of the software #@sztture, we focus on
the interactive visualization component. Visualizatishére investigated to provide
a flexible decision support environment. Crucial decisidapend on factors and
priorities which are not always easy to desctiedorestarting the solution process.
Feedback from the user in the preliminary exploration plesebe incorporated
so that a better tuning of the final solutions takes the DMegyeafces into account.
When solving complex real-world problems many criteriamesent, some explicit
in the current modeling through but some implicit in the decision-maker mind and
experience. Therefore the user must be kept in the loop fisesjuent refinements,
and the need arises to present candidate solutions andlpmvidemandietailed
focus on selected portions of the search space.

Recent developments in the literature of visualization @péps and networks
consider issues of scalability required when dealing wighyMarge graphs. For
examplesampling with a biasiccording to a specific focus and aiming at preserving
some relevant graph properties is considered in [22]. Teedeawing ofonline
dynamic graphss studied in [9]. The issue is of particular relevance whenuser
is in the loop while an optimization engine is at work: if theagh layout is changing
rapidly the focus of attention may be lost unless technidoiegreserving a mental
map are used.

Previous work in the area of visualization for optimizationludes [21] which
discusses the visualization of evolutionary algorithnmsoahrough multidimen-
sional scaling, and [1] which deals with human-guided semg#arch, combining
information visualization and heuristic search. In thgp@ach, the computer is
responsible only for finding local minima by simple hill4tlbing and the user iden-
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tifies promising regions of the search space, and intervenkslp it escape non-
optimal local minima.

A case study of visualization and optimization for a busingsategy is consid-
ered in [12]. The visualization capability implicitly alis the user to better for-
mulate the objective function for large optimization ruAs.the perceived benefit
of different choices does not have an a priori mathematmahélation, the user’s
intuition and pattern recognition skills are brought irtte solution, while simulta-
neously taking advantage of the strength of algorithmiaagghes to quickly and
accurately find an optimal solution to a well-defined prohlem

N-to-2-space mapping for visualization of search algaoniferformance by us-
ing space-filling curves is discussed in [17]. The main paegs to discover weak-
nesses and tune an algorithm. Visualization of ParetoiS8dEsolutionary Multi-
Objective Optimization is investigated in [19]: finding a ppéng which maintains
most of the dominance relationships is itself a challengindfi-objective optimiza-
tion task.

After a presentation of the overall software architecture will concentrate on
the basic issues to be addressed by appropriate visuatizggchniques: dimen-
sionality reduction, focussed reduction in the number afesoand edges, dynamic
visualization and exploration.

3 The software architecture

Interfacing a generic optimization algorithm with a uselowteeds to take decisions
is a delicate issue that must consider many nuances of bategaVhile optimiza-
tion systems operate at their best with well-defined, datestic objectives and can
generate a plethora of different solutions on arbitrariphhdimensional spaces, a
decision maker is pursuing conflicting goals with stoclastitcomes, tradeoff poli-
cies that rely on his intuition, and is able to compare sneth ©f solutions repre-
sented on a two- or at most three-dimensional graph.

A recent survey on the topic of multi-objective decision ngk{6] identifies a
number of research and application challenges relatedstodhtext: (1) uncertainty
in the input and in the evaluation of criteria, (2) high dimemality of the search
and objective spaces, (3) not well ordered preference sebigd) the representation
and use of domain knowledge, (5) the existence of througbpustraints in the
process, and (6) the possible distribution of the processtutitiple interconnected
computers.

The architecture we propose, callédapheur is shown in Fig. 1. It is based on
a three-tier model that embeds most of these issues byfigiagtthe core function-
alities related to the interface between the optimizatigorithms (bottom) and the
user (top). The architecture is independent from the ogttion package in use, as
long as an appropriate stub can be designed in order to abteith it. These stubs,
which can be a data filter in the simpler off-line case, aréectéd within the back-
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Fig. 1 The Grapheursystem architecture. The core component is the Data aggregangine,
which handles data and user feedback in a consistent way.

end interface. In this regard, we identify two main clasdespdimization services
(bottom of Fig. 1):

e Off-line algorithms that do not interact with the user, eittbecause they lack
an interface or because they provide a complete enumeratisolutions, or
at least a representative set covering the space of possihlgons. Historic
or a posterioridata analysis also fall in this category. Data produced bgeh
algorithms is treated as a database which needs to be brdoysbe user in a
convenient way.

e Online algorithms that can be drivenin their optimizatioogess either by online
commands that dynamically modify their behavior, or by waesing them with
different parameters. By designing the appropriate strdraote optimization
services, possibly leveraging cloud or grid computingasfructures, can also
be used.

The business intelligence of tli&rapheursystem is located in the Data aggre-
gation engine. Its main role is to provide an algorithm- andhdin-independent
view on the provided solutions by applying dimensional@gluction and clustering
techniques, as described in Sec. 4.

The Presentation and feedback dispatcher lies on top ofotfeecomponent. Its
purpose is to make data meaningful to the user by displayibgth in standard
graphs and in user- and domain-specific ways by taking intowat the user inter-
action environment. Some of its functions are:

e Domain-specific data displays: beside common graphindiabildomain-specific
charts can also be provided; for example, in Fig. 2 (top) &reoverage chart is
associated to each solution.
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e Cognitive sugamllowing the user to rapidly identify places and solutiomshie
visualization space; see for instance flags (placed by tke) us Fig. 3, and
ellipsoids that identify clusters of related solutionseTiermcognitive sugais
chosen to remind the term “syntactic sugar” known in prograng language
syntax: although not strictly necessary, it makes the \izai@on “sweeter” for
humans to use.

e Reaction to user feedback, whose purpose can be eitheetdladtcurrent view
by geometric transforms or selection mechanisms, or toaskeiw solutions, for
instance by zooming to a small portion of the view to see moheations within
stricter quality bounds.

e Environment-dependent display, ranging from dynamic 3Bspntations with
complex user input to static web pages with limited intécactor remote users
accessing the system through a web browser.

The architecture is suitable for local use as well as foredéht kinds of remote
operation. For example, a user can run a local copy ofataepheurarchitecture,
in order to have a dynamic high-level view of the current datawhile delegating
the optimization algorithm to a dedicated server accestsea network stub. On the
other hand, a user may access the whole system remotely adila@ ervice with
a more limited set of interaction mechanisms.

4 Reducing the dimensionality and the dataset size

When the number of inputs is large, and this is the standase fa combinatorial
optimization with hundreds or millions of variables, rethgcthe dimensionality to
the human accessible two or three dimensions is the staistarelto be addressed.

Of course, no optimal solution is available and the objedswvto project the input
coordinates: from n to 2 o 3 dimensions while maintaining some of the desired
properties and information contained in the original data.

In our case, we concentrate on mapping the solution inputdiaates, while a
suitable color-coding is used to represent objective fonctalues.

A natural way to reason about solutions is through basic eptscof similarity
of solutions. The human questions a decision maker poses #re kind:

e Are the various solutions radically different or similar?

e If solutions are different, can the possibilities be corgihinto some relevant
examples (prototypes) of the different solutions?

e Giventhat one prefers some types of solutions (e.g., bea#is®ome non-explicit
criteria), can the system produce more solutions closertaiogreferred proto-
types?

To define computable procedures, the above issues reqeiréefinition of a
metric d(x, y) to quantify the distance between two solutions. This metaic be
given by the Euclidean distance in the solution parametaeor by the Hamming
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distance if solutions can be represented as binary stiifmsever, they might need
ad-hoc, domain-dependent definitions.

To present anecdotal evidence of the different methodshenfollowing we
present examples related to the Wi-Fi access point placeapgtication [3]. The
problem is to install a number of wireless stations (accesstg, AP) in an area
with multiple and conflicting objectives, such as:

e the area in which at least one AP signal is above a minimunsliold (i.e, the
network coverage) must be maximized;

e the area in which the sum of electromagnetic power is aboveem ghreshold
must be minimized (health protection);

e the deployment cost (number of APs, type of mount, distarm® £xisting ca-
bles) must be minimized;

e other uses of the system (e.g., radiolocalization) mussipysbe taken into ac-
count.

The objective function for the placement®fAPs in a two-dimensional space with
m objective criteria is in the form

RN - R™,

where the configuratiom € R?*V encodes the coordinates of tiigh AP in
(w2i-1,72;),7 = 1,..., N. While the most natural domain for the problenitig",

in order to define a metric between solutions we need to censianmetries: since
the APs are indistinguishable, the objective functjois invariant by permutations
of AP indices, therefore i, ' € R?V are two solutions, a good metric is given by

N 3
5(.’13, -’13/) = <7r%11171}\r Z H(inflv'rQi)a (Il27ri717x/27'ri) |2> ’

i=1

wherell is the set of permutations dr, ..., N}.

4.1 Multi-dimensional scaling

After the metric is defined, visualizing the distance relaships among the myriads
of solutions on a two or three-dimensional space is not alsitagsk. The methods
that we consider are force-directed because they allowyfioaihic interaction with
the user.

Hook’sL aw-based models— The analogy is that of a physical system where nodes
are connected by springs, which is relaxed to a (local) mimnenergy state. In
practice, “forces” in these methods influence displacemant not accelerations
and the dynamics is often simplified in a pragmatic mannerbimio acceptable
layouts in reasonable CPU times.

If 0;,; are the original distances argl; the Euclidean distances among the projected
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points, in general one aims at minimizing the differencdsvben the original and
the projected distances. The detailed definition diffeti®way in which the errors
are weighted. For example,

E = Z(5i,j —d;  )? (3)

1<j

penalizes all errors in the same (quadratic) manner, while

my =y, G dl (4)

62 .
i<j 1]

penalizes relative errors. Large errors on large distanoast as small errors on
small distances, which is in some cases consistent with hyudgment.

The minimization is usually executed by gradient descenhefabove error func-
tions. Gradient descent has well known weaknesses fooiitlitioned problems,
and faster and more robust methods can also be considerexgimple the BFGS
quasi-Newton used in [2].

Kamada-Kawai model [18] — A popular method is that of Kamada and Kawai
(KK), inspired by the seminal Eades’ work [8]. The KK energy i

Exk =Y (i —dij)’ (5)

i<j

whered; ; is given by theength of the shortest patietween two nodes. This def-
inition encourages not only placing at a given distancectlyeconnected nodes,
but also placing at the double distance nodes that are twe d&way, etc., therefore
helping to create a more globally consistent display. Omlg gertex is moved at
each iteration, in a spirit similar to the stochastic gratidescent technique.

Fruchterman-Reingold model [10] — Another popular approach has been pro-
posed by Fruchterman and Reingold (FR), who define the FRygiasr

1 3 2
Ber = o1 Y& -k logd;. (6)

i<j i<j

After partial derivatives are calculated, the FR energyliesan attractive force pro-
portional tod? between directly connected nodes from the first term, andasive
force between all nodes from the second term, a force priopaitto 1/d . In the
above/ is the desired optimal distance between two vertices: aisrtiees system
reaches the minimum energy value at distatddultiple attractions and repulsions
complicate matters so that an empirical formhle: C'\/area/no.ofvertices with
an adjustabl€’ parameter is suggested. The model is usually presentehirs tef
forces, used to calculate displacements. To encouragesrgence, the displace-
ment of each vertex is limited to some maximum value, whiatrel@ses over time.
To speed the algorithm up, repulsive forces are calculatégamong reasonably
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close nodes (within distanc®:, with a grid-like spatial database: the candidates
to be included in the repulsive force calculation are imragady identified in time
O(||V]]), avoiding examination of all couples in tind(||V[|?).

All previously proposed methods are closely related. In flae underlying uni-
fying paradigm is that of gradient-descent of a specific gn&rnction. Some tech-
niques intertwine energy and optimization method veryadpsvhile separating the
two helps in identifying the goals and the related qualityaswee (the energy func-
tion) from the methods to reach the goals, which can presentypical problems
related to local minima trapping, dependence on initialditions, etc.

Coming back to our objective of representing solutionsadglises, energy func-
tions can be used to encourage a fair representation ofsédirdies. In many cases
some coarser way to reason about similar solutions is dgtoiferred. A possi-
bility is to allow the DM to specify a distance threshald, i.e., so that he will
consider as practically indistinguishable solutions witthat distance. Based on
the threshold, simple binary edges are introduced in thatisal graph. Two nodes
are connected if and only if their distance is less thanThe above dimensionality
reduction techniques can then be applied with these zeeamtances, as well as
the FR technique.

4.2 Clustering

A human person has a limited amount of short-term memory tasked in problem
solving activities. The precise estimate is of course fubny experts agree that it
becomes difficult for a standard decision maker to analyzeertiman five to seven
different options at the same time.

When the starting number of solutions is much bigger, waystrba developed
to condense the relevant information by identifying clustef similar solutions.
After clusters are found, a representative solution fohedgster can be presented
to the DM.

The cluster visualization process can proceed in a top-thoamer, by first con-
centrating on macroscopic differences, and then progrggiocussing onto finer
and fined details.

TheGrapheurvisualization architecture follows the above requirersdaytclus-
tering dataset elements. The clustering techniques alailathe first release are:

e Hierarchical clustering: the user can browse through fiecluster resolution
levels, from one single cluster encompassing the wholesdgtand whose shape
hints at the overall data distribution, to as many as the wigres, with smooth
animated transitions between levels that help the usereperthe underlying
hierarchical relationship.

e k-means clustering, where either the user or the system eléeeglnumber of
clusters.

e Quasi cliques [7] are a recently proposed method for idgntifislands of con-
nected components in graphs, where some parameters definegthired con-
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nectivity strength. Unlike the previously described cduistg methods, they do
not partition the dataset, but they allow for overlappingsets and are able to
disregard isolated elements.

In order to graphically represent a cluster, we operate mways. First, if a
display property (such as color or shape) of the data itenasadlable, it is used
to encode the cluster. Second, the cluster itself is reptedeby means of its in-
ertial ellipsoid, whose surface is the locus of points hguinit distance from the
cluster’s average position according to the Mahalanobisiogiven by the clus-
ter's dispersion. In order to display the cluster ellipsoing OpenGL primitives
upon which theGrapheursystem is based, & = {x,...,z,} be a cluster, and
let p, = (pi1,pi2, pi3) be the (3D) coordinates where item is mapped by the
dimensionality reduction procedure. The cemaf the cluster in the user space is
therefore the mean value: .

Zpi'
i=1

Let the covariance components be defined as

p:

S|

k=1

Sij =

S|

According to the OpenGL internal format, where points aneresented as row
vectors of homogeneous coordinatesRifhi with the infinite plane represented as
(z,y, 2,0), the projective coordinate transformation mapping the spihere into
the desired ellipsoid is represented by the following matri

S11 512 513 0
So1 S22 523 0

Te = . 7
¢ S31 S32 533 0 Q)
p1 p2 P31
When moving between hierarchical clustering levels, eltGwill split into sev-
eral cluster€y, ..., C;. To preserve the proper mental image, a parametric transiti
from ellipsoid7¢ to its! offspringsit,, . .., T¢, will be animated and the ellipsoids
Te = (1 - NT¢ + Mg, i=1,....,1

will be drawn with parametex uniformly varying from 0 to 1 in a given time inter-
val (currently 1s). This will effectively show the originallipsoidmorphinginto its
offsprings.
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Fig. 3 Clusters of solutions identified by the data aggregationrengre displayed together with
individuals (left) or with representative solutions (righ

5 User interaction and dynamic layout

Figures 2 and 3 contain four screenshots that exemplify sufrtfee data aggrega-
tion and display functionalities of th@rapheursystem. The AP placement applica-
tion described in Sec. 4 has been used to generate a datatetuifl 50 solutions,
each representing the two-dimensional position of 5 acpes#s, amounting at
10 coordinates, which are reduced to 3 by the FruchtermamgBlel model (6).
The rendering of the 3D mapping is obtained using the Operiisarl.

Solutions are represented by spheres, while their colavdeethe main objec-
tive (coverage area, from red to blue). In the example, nesotutions may cor-
respond to dramatically different coverage areas becauséngnan AP by few
centimeters from one side of the wall to the other can sigaifiy change their
effectiveness.

In Fig. 2 (top), a raw display of solutions is provided. Theuus free to navigate
through solutions by means of arrow keys or by other conteviaks, therefore
zooming on particularly interesting areas. The user hageli on one such solu-
tion, triggering the display of domain-sensitive datahis tase a map showing the
corresponding position of the APs and the radio signal sitgn

While solution selection in the parameters space is donealiigating through
the 3D user space, selecting solutions according to obgeétinction values can
be done by displaying ancillary charts, such as the paetdinates chart shown
in Fig. 2 (bottom). In this figure, the user has already ometat range restriction
on some objectives by moving the green handles, and constytiee number of
displayed spheres has been reduced. Moreover, the uselabad pome “flags” on
interesting solutions, whose corresponding parallel dioate profile is shown in
cyan.

Clusters are represented as wire-frame ellipsoids defigdeigb 7 that enclose
the region of 3D space in which most solutions are displayigd 3 shows a number
such clusters, together with the whole set of solutions enléft panel, while the
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right panel shows how the user’s cognitive burden can becestiy only displaying
the most representative solution of each cluster. Notesthrae clusters are actually
singletons.

A useful visual hint for navigation is an absolute three-giisional grid, shown
in Fig. 2 that allows the user to move within the 3D space wim&ntaining a co-
herent mental map of his actions. A significant source of asioh in 3D dynamic
representations is in fact the possibility of two equivalerental representations,
either user-centered (the fixed user moves the dataset tovemient position) or
data-centered (the user moves his own point of view withindataset). The exis-
tence of an absolute grid allows the user to figure out thas meaving within the
solution space, therefore making the correct assumptibaatahe effects of his
actions. In the presence of other wire-frame objects, sadtiuster ellipsoids, the
grid may confuse the user, who can disable it.

6 Conclusions

We discussed the realization of a comprehensive softwahiacture for interactive
optimization, with a particular emphasis on supportingifiExvisualization.
The main advantages of ti@rapheurframework are:

e Post-processing by clustering and statistical analysige §arts from a set of
solutions, or a set of possible choices, visualizes thendeudvers relationships
and hidden structure through clustering and dimensigreditluction techniques.

e Seamless navigation in solution space, also with helpdgnitive sugaitems.

e Capacity to analyze solutions adapted to the human cogratiities. This re-
quires that the tool goes into the background, becomingalist invisible to the
user, and that the human capability of forming mental magpscampact repre-
sentations comes to the foreground.

e \ersatility and neutralityGrapheurcan be used with different solution generator
software and can be easily customized for different probland usage contexts.

e Advanced human-computer interface including 3D-enabledsa and joysticks.

The preliminary tests of the software environment in theccete context of de-
signing a wireless network by placing access points havenstibe effectiveness
of the approach in rapidly reaching a design preferred byd#wsion maker. Ad-
ditional tests are under way in different application araad with final users of
different capabilities.
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