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Abstract This paper proposes a flexible software architecture for interactive multi-
objective optimization, with a user interface for visualizing the results and facilitat-
ing the solution analysis and decision making process.

The architecture is modular, it allows for problem-specificextensions, and it is
applicable as a post-processing tool for all optimization schemes with a number of
different potential solutions. When the architecture is tightly coupled to a specific
problem-solving or optimization method, effective interactive schemes where the
final decision maker is in the loop can be developed.

An application to Reactive Search Optimization is presented. Visualization and
optimization are connected through user interaction: the user is in the loop and the
system rapidly reacts to user inputs, like specifying a focus of analysis, or prefer-
ences for exploring and intensifying the search in interesting areas.

The novelty of the visualization approach consists of usingrecent online graph
drawing techniques, with sampling and mental map preserving schemes, in the
framework of stochastic local search optimization.

Anecdotal results to demonstrate the effectiveness of the approach are shown for
some relevant optimization tasks.

1 Introduction

The development of effective and flexible software architectures for integrating
problem-solving and optimization schemes into the overallbusiness organization,
modeling, and decision making process is a subject which hasbeen explored
for many years. The computational power available even to medium and small
businesses and the development of flexible and rapidly deployable optimization
schemes, often based on stochastic local search and relatedheuristics, promise a
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new progress in the adoption of formal optimization schemesby large and small
businesses.

As an example of recent developments, Microsoft introducedthe Solver Founda-
tion framework (http://www.solverfoundation.com/) to eliminate the
divide between “the world of business planning and management by the front office
staff and the semi-autonomous world of business IT management by MIS personnel
drifting slowly away from the ever-changing and evolving business objectives.”

Our architecture is highly modular, it allows for problem-specific extensions, and
it is applicable as a post-processing tool for all optimization schemes producing a
number of different potential solutions. When the architecture is tightly coupled to
a specific problem-solving or optimization method, effective interactive schemes
where the final decision maker (DM for short) is in the loop canbe developed.

The effectiveness of visualization is well known in the operations research and
mathematical programming community [16]. Solving problems involves more than
just developing clever algorithms, and giving the optimal solution(s) with minimum
f values. Validating and understanding models, algorithms,and data requires ap-
propriate representations. Visualization is crucial to explore optimal solutions, and
to summarize the results. After all, the purpose of mathematical programming is
insight, not numbers [11].

The last years have witnessed impressive developments in the area of stochas-
tic local search [14] techniques for combinatorial optimization and in methods at
the boundary between optimization and machine learning, a.k.a. intelligent opti-
mization and Reactive Search Optimization (RSO) [4], autonomous search [13],
instance-aware problem-solving [15].

In many cases, the crucial issue is not that of delivering a single solution, but
that of critically analyzinga mass of tentative solutions, which can easily grow up
to thousands or millions. The set of solutions is often characterized by a rich struc-
ture which can be mined to extract useful information. A natural structure is caused
by the fact that different solutions are chained along asearch trajectory. A second
structural element has to do with thefitness landscape: the space of possible con-
figurations is partitioned into attraction basins leading to locally optimal solutions
under the local search dynamics. Solutions in different local minima regions often
differ by important structural changes:clustering solutions according to a similarity
measureconsistent with the local search neighborhood structure iscrucial to nav-
igate among significantly different solutions. One deals with a graph with nodes
given by tentative solutions, and edges given by neighborhood relationships along
the trajectory, or by similarity relationships of two solutions.

The emphasis on providing a flexible product for the final decision maker is
another driver. The final user does not want to be distracted by technical details
but he wants to concentrate on using his expertise for and intelligent and informed
choice among the large number of possibilities. This can be accomplished ifthe
user remains in the loop: he is analyzing preliminary results, and giving feedback
to the system which can be used for directing the search to themost relevant and
promising regions.
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The contribution described in this paper has a clear focus onusing state-of-the-art
techniques for visualizing stochastic local search, and inparticular Reactive Search
Optimization results, both at the end of a run, but also whilea run is in action, to per-
mit user input while optimizing. The visualization techniques focus on presenting
online dynamic graphs, where nodes are candidate solutionsand edges (depend-
ing on a user-defined threshold) signal similarity, on clustering of solutions (with
emphasis on prototypes for the different areas), and on the evolution of the search
trajectory.

The intended user is not necessarily an expert in algorithmic details, but a user
who needs a fast, responsive, intuitive, mental-map preserving way of navigating
among a see of solutions. Abstraction through clustering and the possibility to give
feedback to the search process are important ways to keep theuser in the loop and
encourage him to express in a simple way implicit preferences, not formalizeda
priori in the abstract objective functionf .

In the following sections, Sec. 2 presents a short review of the multi-objective
optimization context and of some existing visualization techniques and Sec. 3 illus-
trates the software architecture. Sec. 4 explains the used dimensionality-reduction
techniques, Sec. 4.2 illustrates the clustering methods, and Sec. 5 discusses the user
interaction and dynamic layout.

2 Visualizing multi-objective optimization problems and reactive
search optimization

Reactive Search Optimization (RSO) [4] advocateslearning for optimizing, by in-
serting a machine learning component into a solution process so that algorithm se-
lection, adaptation, integration, are done in an automatedway, and a comprehensive
solution is delivered to the final user. The diversity of tasks and the dynamicity
which are intrinsic in the real world can be dealt with in an effective manner. The
interaction with the final user is simplified and made human: no complex technical
questions are asked about parameters but the focus is kept onthe specific instance
and user preferences. In fact, the user wants to maintain control of the problem def-
inition, including of course hard and soft constraints, preferences, weights. This is
the part which cannot be automated, while he is happy to delegate issues related to
algorithm choices and tuning.

A first application of the above ideas is studied in the traditional context of multi-
objective optimization problem (MOOPs). The incomplete knowledge about the
problem to be solved is formalized by assuming the knowledgeof a set of desir-
able objectives, and ignorance of their detailed combination.

In detail, a MOOP can be stated as:

maximizef(x) = {f1(x), . . . , fm(x)} (1)

subject to x ∈ Ω (2)
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wherex ∈ R
n is a vector ofn decision variables;Ω ⊂ R

n is the feasible re-
gion and is typically specified as a set of constraints on the decision variables;
f : Ω → R

m is made ofm objective functions which need to be jointly max-
imized. Objective vectors are images of decision vectors and can be written as
z = f (x) = {f1(x), . . . , fm(x)}. The problem is ill-posed whenever objective
functions are conflicting, a situation which typically occurs in the real world. In
these cases, an objective vector is considered optimal if none of its components can
be improved without worsening at least one of the others. An objective vectorz is
said todominatez′, denoted asz ≻ z′, if zk ≥ z′k for all k and there exists at least
oneh such thatzh > z′h. A point x̂ is Pareto optimal if there is no otherx ∈ Ω such
thatx dominateŝx. The set of Pareto optimal points is calledPareto set(PS). The
corresponding set of Pareto optimal objective vectors is called Pareto front(PF).

In particular, we focus oninteractivemulti-objective optimization. According
to [20], through interactive MOO the DM is building a conviction of what is possible
and confronting this knowledge with her preferences that also evolve.

The assumptions about knowledge and ignorance of the problem to be solved can
be of course generalized. For example, in many cases the decision maker wants to
actuallyseethe proposed solution (not only the objective values) to decide. This is
a clear evidence that objectives are not the entire story andadditional opportunities
for learning the real preferences exist. A recent proposal of an evolutionary multi-
objective optimization algorithm adapting to the decisionmaker is presented in [5].

In this work, after a brief presentation of the software architecture, we focus on
the interactive visualization component. Visualization is here investigated to provide
a flexible decision support environment. Crucial decisionsdepend on factors and
priorities which are not always easy to describebeforestarting the solution process.
Feedback from the user in the preliminary exploration phasecan be incorporated
so that a better tuning of the final solutions takes the DM preferences into account.
When solving complex real-world problems many criteria arepresent, some explicit
in the current modeling throughf , but some implicit in the decision-maker mind and
experience. Therefore the user must be kept in the loop for subsequent refinements,
and the need arises to present candidate solutions and provideon demanddetailed
focus on selected portions of the search space.

Recent developments in the literature of visualization of graphs and networks
consider issues of scalability required when dealing with very large graphs. For
example,sampling with a biasaccording to a specific focus and aiming at preserving
some relevant graph properties is considered in [22]. The fast drawing ofonline
dynamic graphsis studied in [9]. The issue is of particular relevance when the user
is in the loop while an optimization engine is at work: if the graph layout is changing
rapidly the focus of attention may be lost unless techniquesfor preserving a mental
map are used.

Previous work in the area of visualization for optimizationincludes [21] which
discusses the visualization of evolutionary algorithms also through multidimen-
sional scaling, and [1] which deals with human-guided simple search, combining
information visualization and heuristic search. In their approach, the computer is
responsible only for finding local minima by simple hill-climbing and the user iden-
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tifies promising regions of the search space, and intervenesto help it escape non-
optimal local minima.

A case study of visualization and optimization for a business strategy is consid-
ered in [12]. The visualization capability implicitly allows the user to better for-
mulate the objective function for large optimization runs.As the perceived benefit
of different choices does not have an a priori mathematical formulation, the user’s
intuition and pattern recognition skills are brought into the solution, while simulta-
neously taking advantage of the strength of algorithmic approaches to quickly and
accurately find an optimal solution to a well-defined problem.

N-to-2-space mapping for visualization of search algorithm performance by us-
ing space-filling curves is discussed in [17]. The main purpose is to discover weak-
nesses and tune an algorithm. Visualization of Pareto-Setsin Evolutionary Multi-
Objective Optimization is investigated in [19]: finding a mapping which maintains
most of the dominance relationships is itself a challengingmulti-objective optimiza-
tion task.

After a presentation of the overall software architecture,we will concentrate on
the basic issues to be addressed by appropriate visualization techniques: dimen-
sionality reduction, focussed reduction in the number of nodes and edges, dynamic
visualization and exploration.

3 The software architecture

Interfacing a generic optimization algorithm with a user who needs to take decisions
is a delicate issue that must consider many nuances of both parties. While optimiza-
tion systems operate at their best with well-defined, deterministic objectives and can
generate a plethora of different solutions on arbitrarily high-dimensional spaces, a
decision maker is pursuing conflicting goals with stochastic outcomes, tradeoff poli-
cies that rely on his intuition, and is able to compare small sets of solutions repre-
sented on a two- or at most three-dimensional graph.

A recent survey on the topic of multi-objective decision making [6] identifies a
number of research and application challenges related to this context: (1) uncertainty
in the input and in the evaluation of criteria, (2) high dimensionality of the search
and objective spaces, (3) not well ordered preference schemes, (4) the representation
and use of domain knowledge, (5) the existence of throughputconstraints in the
process, and (6) the possible distribution of the process tomultiple interconnected
computers.

The architecture we propose, calledGrapheur, is shown in Fig. 1. It is based on
a three-tier model that embeds most of these issues by identifying the core function-
alities related to the interface between the optimization algorithms (bottom) and the
user (top). The architecture is independent from the optimization package in use, as
long as an appropriate stub can be designed in order to interact with it. These stubs,
which can be a data filter in the simpler off-line case, are collected within the back-
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Fig. 1 The Grapheursystem architecture. The core component is the Data aggregation engine,
which handles data and user feedback in a consistent way.

end interface. In this regard, we identify two main classes of optimization services
(bottom of Fig. 1):

• Off-line algorithms that do not interact with the user, either because they lack
an interface or because they provide a complete enumerationof solutions, or
at least a representative set covering the space of possiblesolutions. Historic
or a posterioridata analysis also fall in this category. Data produced by these
algorithms is treated as a database which needs to be browsedby the user in a
convenient way.

• Online algorithms that can be driven in their optimization process either by online
commands that dynamically modify their behavior, or by re-running them with
different parameters. By designing the appropriate stubs,remote optimization
services, possibly leveraging cloud or grid computing infrastructures, can also
be used.

The business intelligence of theGrapheursystem is located in the Data aggre-
gation engine. Its main role is to provide an algorithm- and domain-independent
view on the provided solutions by applying dimensionality reduction and clustering
techniques, as described in Sec. 4.

The Presentation and feedback dispatcher lies on top of the core component. Its
purpose is to make data meaningful to the user by displaying it both in standard
graphs and in user- and domain-specific ways by taking into account the user inter-
action environment. Some of its functions are:

• Domain-specific data displays: beside common graphing abilities, domain-specific
charts can also be provided; for example, in Fig. 2 (top) a radio coverage chart is
associated to each solution.
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• Cognitive sugarallowing the user to rapidly identify places and solutions in the
visualization space; see for instance flags (placed by the user) in Fig. 3, and
ellipsoids that identify clusters of related solutions. The termcognitive sugaris
chosen to remind the term “syntactic sugar” known in programming language
syntax: although not strictly necessary, it makes the visualization “sweeter” for
humans to use.

• Reaction to user feedback, whose purpose can be either to alter the current view
by geometric transforms or selection mechanisms, or to ask for new solutions, for
instance by zooming to a small portion of the view to see more solutions within
stricter quality bounds.

• Environment-dependent display, ranging from dynamic 3D presentations with
complex user input to static web pages with limited interaction for remote users
accessing the system through a web browser.

The architecture is suitable for local use as well as for different kinds of remote
operation. For example, a user can run a local copy of theGrapheurarchitecture,
in order to have a dynamic high-level view of the current dataset, while delegating
the optimization algorithm to a dedicated server accessed via a network stub. On the
other hand, a user may access the whole system remotely as an online service with
a more limited set of interaction mechanisms.

4 Reducing the dimensionality and the dataset size

When the number of inputs is large, and this is the standard case for combinatorial
optimization with hundreds or millions of variables, reducing the dimensionality to
the human accessible two or three dimensions is the standardissue to be addressed.

Of course, no optimal solution is available and the objective is to project the input
coordinatesx from n to 2 o 3 dimensions while maintaining some of the desired
properties and information contained in the original data.

In our case, we concentrate on mapping the solution input coordinates, while a
suitable color-coding is used to represent objective function values.

A natural way to reason about solutions is through basic concepts of similarity
of solutions. The human questions a decision maker poses areof the kind:

• Are the various solutions radically different or similar?
• If solutions are different, can the possibilities be condensed into some relevant

examples (prototypes) of the different solutions?
• Given that one prefers some types of solutions (e.g., because of some non-explicit

criteria), can the system produce more solutions close to certain preferred proto-
types?

To define computable procedures, the above issues require the definition of a
metric δ(x, y) to quantify the distance between two solutions. This metriccan be
given by the Euclidean distance in the solution parameter space, or by the Hamming
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distance if solutions can be represented as binary strings.However, they might need
ad-hoc, domain-dependent definitions.

To present anecdotal evidence of the different methods, in the following we
present examples related to the Wi-Fi access point placement application [3]. The
problem is to install a number of wireless stations (access points, AP) in an area
with multiple and conflicting objectives, such as:

• the area in which at least one AP signal is above a minimum threshold (i.e, the
network coverage) must be maximized;

• the area in which the sum of electromagnetic power is above a given threshold
must be minimized (health protection);

• the deployment cost (number of APs, type of mount, distance from existing ca-
bles) must be minimized;

• other uses of the system (e.g., radiolocalization) must possibly be taken into ac-
count.

The objective function for the placement ofN APs in a two-dimensional space with
m objective criteria is in the form

f : R
2N → R

m,

where the configurationx ∈ R
2N encodes the coordinates of thei-th AP in

(x2i−1, x2i), i = 1, . . . , N . While the most natural domain for the problem isR
2N ,

in order to define a metric between solutions we need to consider symmetries: since
the APs are indistinguishable, the objective functionf is invariant by permutations
of AP indices, therefore ifx, x′ ∈ R

2N are two solutions, a good metric is given by

δ(x, x′) =

(

min
π∈ΠN

N
∑

i=1

‖(x2i−1, x2i), (x
′
2πi−1, x

′
2πi

)‖2

)

1

2

,

whereΠN is the set of permutations on{1, . . . , N}.

4.1 Multi-dimensional scaling

After the metric is defined, visualizing the distance relationships among the myriads
of solutions on a two or three-dimensional space is not a simple task. The methods
that we consider are force-directed because they allow for dynamic interaction with
the user.

Hook’s Law-based models — The analogy is that of a physical system where nodes
are connected by springs, which is relaxed to a (local) minimum energy state. In
practice, “forces” in these methods influence displacements and not accelerations
and the dynamics is often simplified in a pragmatic manner to obtain acceptable
layouts in reasonable CPU times.
If δi,j are the original distances anddi,j the Euclidean distances among the projected
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points, in general one aims at minimizing the differences between the original and
the projected distances. The detailed definition differ by the way in which the errors
are weighted. For example,

E1 =
∑

i<j

(δi,j − di,j)
2 (3)

penalizes all errors in the same (quadratic) manner, while

E2 =
∑

i<j

(δi,j − di,j)
2

δ2

i,j

(4)

penalizes relative errors. Large errors on large distancescount as small errors on
small distances, which is in some cases consistent with human judgment.
The minimization is usually executed by gradient descent ofthe above error func-
tions. Gradient descent has well known weaknesses for ill-conditioned problems,
and faster and more robust methods can also be considered, for example the BFGS
quasi-Newton used in [2].

Kamada-Kawai model [18] — A popular method is that of Kamada and Kawai
(KK), inspired by the seminal Eades’ work [8]. The KK energy is:

EKK =
∑

i<j

(δi,j − di,j)
2 (5)

whereδi,j is given by thelength of the shortest pathbetween two nodes. This def-
inition encourages not only placing at a given distance directly connected nodes,
but also placing at the double distance nodes that are two hops away, etc., therefore
helping to create a more globally consistent display. Only one vertex is moved at
each iteration, in a spirit similar to the stochastic gradient descent technique.

Fruchterman-Reingold model [10] — Another popular approach has been pro-
posed by Fruchterman and Reingold (FR), who define the FR energy as

EFR =
1

3k

∑

i<j

d3

i,j − k2
∑

i<j

log di,j . (6)

After partial derivatives are calculated, the FR energy implies an attractive force pro-
portional tod2 between directly connected nodes from the first term, and a repulsive
force between all nodes from the second term, a force proportional to1/d . In the
above,k is the desired optimal distance between two vertices: a two-vertices system
reaches the minimum energy value at distancek. Multiple attractions and repulsions
complicate matters so that an empirical formulak = C

√

area/no.ofvertices with
an adjustableC parameter is suggested. The model is usually presented in terms of
forces, used to calculate displacements. To encourage convergence, the displace-
ment of each vertex is limited to some maximum value, which decreases over time.
To speed the algorithm up, repulsive forces are calculated only among reasonably
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close nodes (within distance2k, with a grid-like spatial database: the candidates
to be included in the repulsive force calculation are immediately identified in time
Θ(‖V ‖), avoiding examination of all couples in timeΘ(‖V ‖2).

All previously proposed methods are closely related. In fact the underlying uni-
fying paradigm is that of gradient-descent of a specific energy function. Some tech-
niques intertwine energy and optimization method very closely, while separating the
two helps in identifying the goals and the related quality measure (the energy func-
tion) from the methods to reach the goals, which can present the typical problems
related to local minima trapping, dependence on initial conditions, etc.

Coming back to our objective of representing solutions distances, energy func-
tions can be used to encourage a fair representation of all distances. In many cases
some coarser way to reason about similar solutions is actually preferred. A possi-
bility is to allow the DM to specify a distance thresholdδT , i.e., so that he will
consider as practically indistinguishable solutions within that distance. Based on
the threshold, simple binary edges are introduced in the solution graph. Two nodes
are connected if and only if their distance is less thanδT . The above dimensionality
reduction techniques can then be applied with these zero-one distances, as well as
the FR technique.

4.2 Clustering

A human person has a limited amount of short-term memory to beused in problem
solving activities. The precise estimate is of course fuzzy, but experts agree that it
becomes difficult for a standard decision maker to analyze more than five to seven
different options at the same time.

When the starting number of solutions is much bigger, ways must be developed
to condense the relevant information by identifying clusters of similar solutions.
After clusters are found, a representative solution for each cluster can be presented
to the DM.

The cluster visualization process can proceed in a top-downmanner, by first con-
centrating on macroscopic differences, and then progressively focussing onto finer
and fined details.

TheGrapheurvisualization architecture follows the above requirements by clus-
tering dataset elements. The clustering techniques available in the first release are:

• Hierarchical clustering: the user can browse through different cluster resolution
levels, from one single cluster encompassing the whole dataset, and whose shape
hints at the overall data distribution, to as many as the userwishes, with smooth
animated transitions between levels that help the user perceive the underlying
hierarchical relationship.

• k-means clustering, where either the user or the system decide the number of
clusters.

• Quasi cliques [7] are a recently proposed method for identifying islands of con-
nected components in graphs, where some parameters define the required con-
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nectivity strength. Unlike the previously described clustering methods, they do
not partition the dataset, but they allow for overlapping subsets and are able to
disregard isolated elements.

In order to graphically represent a cluster, we operate in two ways. First, if a
display property (such as color or shape) of the data items isavailable, it is used
to encode the cluster. Second, the cluster itself is represented by means of its in-
ertial ellipsoid, whose surface is the locus of points having unit distance from the
cluster’s average position according to the Mahalanobis metric given by the clus-
ter’s dispersion. In order to display the cluster ellipsoidusing OpenGL primitives
upon which theGrapheursystem is based, letC = {x1, . . . , xn} be a cluster, and
let pi = (pi1, pi2, pi3) be the (3D) coordinates where itemxi is mapped by the
dimensionality reduction procedure. The centerp̄ of the cluster in the user space is
therefore the mean value:

p̄ =
1

n

n
∑

i=1

pi.

Let the covariance components be defined as

Sij =
1

n

n
∑

k=1

(pki − p̄i)(pkj − p̄j), i, j = 1, 2, 3.

According to the OpenGL internal format, where points are represented as row
vectors of homogeneous coordinates inR

4 with the infinite plane represented as
(x, y, z, 0), the projective coordinate transformation mapping the unit sphere into
the desired ellipsoid is represented by the following matrix:

TC =









S11 S12 S13 0
S21 S22 S23 0
S31 S32 S33 0
p̄1 p̄2 p̄3 1









. (7)

When moving between hierarchical clustering levels, clusterC will split into sev-
eral clustersC1, . . . , Cl. To preserve the proper mental image, a parametric transition
from ellipsoidTC to its l offspringsTC1

, . . . , TCl
will be animated and the ellipsoids

T λ
Ci

= (1 − λ)TC + λTCi
, i = 1, . . . , l

will be drawn with parameterλ uniformly varying from 0 to 1 in a given time inter-
val (currently 1s). This will effectively show the originalellipsoidmorphinginto its
offsprings.
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Fig. 2 Visualization of Wi-Fi coverage simulation results in a 3D fashion with different types
of standard and problem-dependent charts. Top: a solution is highlighted and its corresponding
coverage chart is displayed; bottom: parallel-coordinates interactive chart
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Fig. 3 Clusters of solutions identified by the data aggregation engine are displayed together with
individuals (left) or with representative solutions (right).

5 User interaction and dynamic layout

Figures 2 and 3 contain four screenshots that exemplify someof the data aggrega-
tion and display functionalities of theGrapheursystem. The AP placement applica-
tion described in Sec. 4 has been used to generate a dataset ofabout 150 solutions,
each representing the two-dimensional position of 5 accesspoints, amounting at
10 coordinates, which are reduced to 3 by the Fruchterman-Reingold model (6).
The rendering of the 3D mapping is obtained using the OpenGL library.

Solutions are represented by spheres, while their color encodes the main objec-
tive (coverage area, from red to blue). In the example, nearby solutions may cor-
respond to dramatically different coverage areas because moving an AP by few
centimeters from one side of the wall to the other can significantly change their
effectiveness.

In Fig. 2 (top), a raw display of solutions is provided. The user is free to navigate
through solutions by means of arrow keys or by other control devices, therefore
zooming on particularly interesting areas. The user has clicked on one such solu-
tion, triggering the display of domain-sensitive data, in this case a map showing the
corresponding position of the APs and the radio signal intensity.

While solution selection in the parameters space is done by navigating through
the 3D user space, selecting solutions according to objective function values can
be done by displaying ancillary charts, such as the parallelcoordinates chart shown
in Fig. 2 (bottom). In this figure, the user has already operated a range restriction
on some objectives by moving the green handles, and consequently the number of
displayed spheres has been reduced. Moreover, the user has placed some “flags” on
interesting solutions, whose corresponding parallel coordinate profile is shown in
cyan.

Clusters are represented as wire-frame ellipsoids defined by Eq. 7 that enclose
the region of 3D space in which most solutions are displayed.Fig. 3 shows a number
such clusters, together with the whole set of solutions on the left panel, while the
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right panel shows how the user’s cognitive burden can be reduced by only displaying
the most representative solution of each cluster. Note thatsome clusters are actually
singletons.

A useful visual hint for navigation is an absolute three-dimensional grid, shown
in Fig. 2 that allows the user to move within the 3D space whilemaintaining a co-
herent mental map of his actions. A significant source of confusion in 3D dynamic
representations is in fact the possibility of two equivalent mental representations,
either user-centered (the fixed user moves the dataset to a convenient position) or
data-centered (the user moves his own point of view within the dataset). The exis-
tence of an absolute grid allows the user to figure out that he is moving within the
solution space, therefore making the correct assumptions about the effects of his
actions. In the presence of other wire-frame objects, such as cluster ellipsoids, the
grid may confuse the user, who can disable it.

6 Conclusions

We discussed the realization of a comprehensive software architecture for interactive
optimization, with a particular emphasis on supporting flexible visualization.

The main advantages of theGrapheurframework are:

• Post-processing by clustering and statistical analysis. One starts from a set of
solutions, or a set of possible choices, visualizes them anddiscovers relationships
and hidden structure through clustering and dimensionality-reduction techniques.

• Seamless navigation in solution space, also with help bycognitive sugaritems.
• Capacity to analyze solutions adapted to the human cognitive abilities. This re-

quires that the tool goes into the background, becoming virtually invisible to the
user, and that the human capability of forming mental maps and compact repre-
sentations comes to the foreground.

• Versatility and neutrality:Grapheurcan be used with different solution generator
software and can be easily customized for different problems and usage contexts.

• Advanced human-computer interface including 3D-enabled mouse and joysticks.

The preliminary tests of the software environment in the concrete context of de-
signing a wireless network by placing access points have shown the effectiveness
of the approach in rapidly reaching a design preferred by thedecision maker. Ad-
ditional tests are under way in different application areasand with final users of
different capabilities.
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