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1 Introduction

The final purpose of Reactive Search Optimization (RSO) is tosimplify the life for
the final user of optimization. While researchers enjoy designing algorithms, testing
alternatives, tuning parameters and choosing solution schemes — in fact this is part
of their daily life — the final users’ interests are different: solving a problem in the
most effective way without requiring a costly adaptation and learning curve.

Reactive Search Optimization has to do withlearning for optimizing, with the
insertion of a machine learning component into a solution process so that algorithm
selection, adaptation, integration, are done in an automated way, and a compre-
hensive solution is delivered to the final user. The diversity of tasks, stochasticity,
dynamicity which is intrinsic in real-world tasks can be dealt with in a seamless
manner. The interaction with the final user is simplified and made human: no com-
plex technical questions are asked about parameters, but the focus is kept on the
problem’s detailed characteristics and user preferences.In fact, the user wants to
maintain control of the problem definition, including of course hard and soft con-
straints, preferences, weights. This is the part which cannot be automated, while the
user is happy to delegate issues related to algorithm choices and tuning.

Needless to say, studying and designing satisfactory solutions to the above final
goal is a long-term enterprise with opportunities for PhD students and researchers of
this century, but we feel that the road is clear and that preliminary results of interest
abound.

Apart from the above concrete issues related to the final user, Reactive Search
Optimization also addresses a scientific issue related to the reproducibility of results
and to the objective evaluation of methods. In fact, if an intelligent user is actively

Roberto Battiti
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in the loop between a parametric algorithm and the solution of a problem, judging
about an algorithm in isolation from its user — in some cases its creator — becomes
difficult if not impossible. Are the obtained results a meritof the algorithm or a merit
of its intelligent user? In some cases the second case holds,which explains why even
some naı̈ve and simplistic techniques can obtain results ofinterest if adopted by a
motivated person, not to say by a researcher in love with his pet algorithm and under
pressure to get something published.

Now that the long-term vision is given, let’s come to a more detailed definition.

Reactive Search Optimization (RSO) advocates the integration of machine
learning techniques into search heuristics for solving complex optimization
problems. The wordreactivehints at a ready response to events while alter-
native solutions are tested, through an internal online feedback loop for the
self-tuning of critical parameters. Its strength lies in the introduction of high-
level skills often associated to the human brain, such as learning from the past
experience, learning on the job, rapid analysis of alternatives, ability to cope
with incomplete information, quick adaptation to new situations and events.

If one considers the dictionary definition ofreactive, see the box below, the
“ready response to some treatment, situation, or stimulus”is the part of interest
to us. The contrary in our context is: inactive, inert, unresponsive. For sure, its con-
trary is not proactive! In fact, when the level of automationincreases, the final user
wins, but the work becomes much more challenging for the researcher: he has to
be fully proactive to anticipate the different adaptation needs of a Reactive Search
Optimization algorithm.

re·ac·tive
1: of, relating to, or marked by reaction or reactance
2 a: readily responsive to a stimulus b: occurring as a resultof stress or emotional
upset
re·ac·tion
Date: circa 1611
1 a: the act or process or an instance of reacting b: resistance or opposition to a force,
influence, or movement . . .
2: a response to some treatment, situation, or stimulus “herstunned reaction to the
news” . . .
3: bodily response to or activity aroused by a stimulus: a: anaction induced by
vital resistance to another action ; especially : the response of tissues to a foreign
substance (as an antigen or infective agent) . . .
4: the force that a body subjected to the action of a force fromanother body exerts
in the opposite direction
5 a (1): chemical transformation or change : the interactionof chemical entities (2):
the state resulting from such a reaction b: a process involving change in atomic nuclei

(derived from:Merriam-Webster online dictionary)
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Before dwelling on the technical details, let’s briefly mention some relevant char-
acteristics of Reactive Search Optimization when applied in the context of local
search based processes.

Learning on the job Real-world problems have a rich structure. While many al-
ternative solutions are tested in the exploration of a search space, patterns and
regularities appear. The human brain quickly learns and drives future decisions
based on previous observations. This is the main inspiration source for inserting
online machine learning techniques into the optimization engine of RSO.

Rapid generation and analysis of many alternatives Often, to solve a problem
one searches among a large number of alternatives, each requiring the analysis
of what-if scenarios. The search speed is improved if alternatives are generated
in a strategic manner, so that different solutions are chained along a trajectory in
the search space exploring wide areas and rapidly exploiting the most promising
solutions.

Flexible decision support Crucial decisions depend on several factors and prior-
ities which are not always easy to describe before starting the solution process.
Feedback from the user in the preliminary exploration phasecan be incorporated
so that a better tuning of the final solutions takes the end user preferences into
account.

Diversity of solutions The final decision is up to the user, not the machine. The
reason is that not all qualitative factors of a problem can beencoded into a com-
puter program. Having a set of diverse near-best alternatives is often crucial for
the decision maker.

Anytime solutions The user decides when to stop searching. A first complete
solution is generated rapidly, better and better ones are produced in the following
search phases. The more the program runs, the bigger the possibility to identify
excellent solutions, but if you want a solution fast you are going to get it!

Methodologies of interest for Reactive Search Optimization include machine
learning and statistics, in particular neural networks, artificial intelligence, rein-
forcement learning, active or query learning.

When one considers thesourceof information that is used for the algorithm
selection and tuning process, it is important to stress thatthere are at least three
different possibilities:

1. Problem-dependent information. This is related to characteristics of the specific
problem. For example, a local search scheme for the Traveling Salesman Prob-
lem needs a different neighborhood definition w.r.t. a scheme for the network
partitioning problem.

2. Task-dependent information. A single problem consists of a set of instances or
tasks with characteristics which can be radically different. For example, a Trav-
eling Salesman task for delivering pizza among a set locations in Los Angeles
can be very different from a pizza delivery task in Trento, a small and pleasant
town in the Alps.
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3. Local properties in configuration space. When one considers a local search
scheme based on perturbation one builds a trajectory in configuration space given
by successive sample points generated by selecting and applying the local moves.
In poetic terms, one travels along a fitness surface with peaks and valleys which
can vary a lot during the trip. For example, the size and depthof the attractors
around local minimizers can vary from a reasonably flat surface, to one charac-
terized by deep wells. If a scheme for escaping local minimizers is adapted also
to the local characteristics, better results can be expected.

Now, the first possibility is the typical source of information for offline algorithm
selection and parameter tuning, while the last two possibilities are the starting point
for the online schemes of RSO, where parameters are dynamically tuned based on
the current optimization state and previous history of the search process while work-
ing on a specific instance.

Intelligent optimization, a superset of Reactive Search Optimization, refers to
a more extended area of research, including online and off-line schemes based on
the use of memory, adaptation, incremental development of models, experimental
algorithmics applied to optimization, intelligent tuningand design of heuristics.

The RSO approach of learning on the job is to be contrasted with off-line pa-
rameter tuning. This orthogonal approach is studied for example in [80, 79], that
proposes methods to predict per-instance and per-parameter run-times with reason-
able accuracy. These predictive models are then used to predict which parameter
settings result in the lowest run-time for a given instance,thus automatically tuning
the parameter values of a stochastic local search (SLS) algorithm on a per-instance
basis by simply picking the parameter configuration that is predicted to yield the
lowest run-time. An iterated local search (ILS) algorithm for the algorithm con-
figuration problem is proposed in [81]. The approach works for both deterministic
and randomized algorithms and can be applied regardless of tuning scenario and
optimization objective.

On-line and off-line strategies are complementary: in fact, even RSO methods
tend to have a number of parameters that remain fixed during the search and can
hence be tuned by off-line approaches.

The following part of this chapter is organized as follows. First the different op-
portunities for RSO strategies are listed and briefly commented. Section 2 describes
different RSO schemes that have been introduced in the literature. A much more ex-
tended presentation has been recently published in [14]. Then sample applications
of Reactive Search Optimization principles are illustrated in Section 3.

The brevity of this chapter does not allow for a complete listing and examination:
we ask the omitted authors for forgiveness, and encourage authors of novel work to
get in touch with us. The Reactive Search Optimization community1 and software2

web sites are two additional sources of information which can be mined for more
detailed interests.

1 http://reactive-search.org/
2 http://reactive-search.com/
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2 Different reaction possibilities

The design principles of many superficially different techniques for diversifying the
search in a responsive manner according to the RSO principles of learning while op-
timizing, are strongly related. The unifying principle is that of using online reactive
learning schemes to increase the robustness and to permit more hands-offusage of
software for optimization.

For brevity we concentrate this review chapter on reactive techniques applied
to single local search streams. Other possibilities related to using more than one
search stream, a.k.a. population-based methods, genetic algorithms, evolutionary
techniques, etc. range from adaptive portfolios, to restart strategies, to racing tech-
niques, to intelligent and reactive solver teams [14].

2.1 Reactive prohibitions

It is part of commonsense that the discovery of radically newsolutions which is
associated to real creativity demands departing from the usual way of doing things,
avoiding known solutions. The popular concepts of “lateralthinking” and “thinking
outside the box” are related to shifting the point of view, observing an old problem
with new eyes, discarding pet hypotheses.

Techniques that apply lateral thinking to problems are characterized by the
shifting of thinking patterns, away from entrenched or predictable thinking to
new or unexpected ideas. A new idea that is the result of lateral thinking is
not always a helpful one, but when a good idea is discovered inthis way it is
usually obvious in hindsight, which is a feature lateral thinking shares with a
joke.

There are a number of mental tools or methods that can be used to bring
about lateral thinking. These include the following:

. . .
Provocation: Declare the usual perception out of bounds, orprovide some

provocative alternative to the usual situation under consideration. . . .
As an example see the provocation on cars having square wheels.
Challenge: Simply challenge the way things have always beendone or

seen, or the way they are. This is done not to show there is anything wrong
with the existing situation but simply to direct your perceptions to exploring
outside the current area.

For example you could challenge coffee cups being produced with a han-
dle. There is nothing wrong with coffee cups having handles so the challenge
is a direction to explore without defending the status quo. The reason for the



6 Roberto Battiti and Mauro Brunato

handle seems to be that the cup is often too hot to hold directly. Perhaps coffee
cups could be made with insulated finger grips . . .

There are many other techniques . . . All these tools are practical matters for
circumstances where our normal automatic perceptions and pattern matching
tend to keep us trapped “within the box”.

(derived from Wikipedia “lateral thinking” voice, Jan 2008)

When one reflects about the above connections, it is not surprising to see ideas re-
lated to using “prohibitions” to encourage diversificationand exploration (the tech-
nical terms for true creativity in the context of optimization heuristics) in different
contexts and different times. For example, they can be foundin thedenialstrategy
of [121]: once common features are detected in many suboptimal solutions, they are
forbidden.

The full blossoming of “intelligent prohibition-based heuristics” starting from
the late eighties is greatly due to the role of F. Glover in theproposal and diffusion
of a rich variety of meta-heuristic tools under the umbrellaof Tabu Search (TS) [68,
69], but see also [73] for an independent seminal paper. It isevident that Glover’s
ideas have been a source of inspiration for many approaches based on the intelligent
use of memory in heuristics.

The main competitive advantage of TS with respect to alternative heuristics based
on local search like Simulated Annealing (SA) lies in the intelligent use of the past
history of the search to influence its future steps. Because TS includes now a wide
variety of methods, we prefer the termprohibition-based searchwhen the investi-
gation is focussed onto the use of prohibition to encourage diversification.

Let us assume that the feasible search space is the set of binary strings with
a given lengthL: X = {0,1}L. X(t) is the current configuration andN(X(t)) the
set of its neighbors, i.e., configurations that can be explored in the following step
(Sec. 2.2 is mainly focused on neighborhoods). In prohibition-based search some
of the neighbors areprohibited, a subsetNA(X(t)) ⊂ N(X(t)) contains theallowed
ones. The general way of generating the search trajectory isgiven by:

X(t+1) = BEST-NEIGHBOR( NA(X(t)) ) (1)

NA(X(t+1)) = ALLOW(N(X(t+1)),X(0), . . . ,X(t+1)) (2)

The set-valued function ALLOW selects a subset ofN(X(t+1)) in a manner that de-
pends on the entire search trajectoryX(0), . . . ,X(t+1).

By analogy with the concept ofabstract data typein Computer Science [2], and
with the relatedobject-orientedsoftware engineering framework [49], it is useful
to separate the abstract concepts and operations of TS from the detailed implemen-
tation, i.e., realization with specific data structures. Inother words,policies (that
determine which trajectory is generated in the search space, what the balance of in-
tensification and diversification is, etc.) should be separated frommechanismsthat
determinehow a specific policy is realized. A first classification distinguishes be-
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tweenstrict-TS, which prohibits only the moves leading back to previously visited
configurations, andfixed-TS, which prohibits only the inverses of moves which have
been applied recently in the search, their recency being judged according to a pro-
hibition parameterT, also called tabu tenure.

Let µ−1 denote theinverseof a move, for example, ifµi is changing thei-th
bit of a binary string from 0 to 1,µi

−1 changes the same bit from 1 to 0. A neigh-
bor is allowed if and only if it is obtained from the current point by applying a
move such that its inverse has not been used during the lastT iterations. In detail,
if L ASTUSED(µ) is the last usage time of moveµ (LASTUSED(µ) = −∞ at the
beginning):

NA(X(t)) = {X = µ ◦X(t) s. t. LASTUSED(µ−1) < (t−T)} (3)

If T changes with the iteration counter depending on the search status, and in
this case the notation isT(t), the general dynamical system that generates the search
trajectory comprises an additional evolution equation forT(t):

T(t) = REACT(T(t−1),X(0), . . . ,X(t)) (4)

NA(X(t)) = {X = µ ◦X(t) s. t. LASTUSED(µ−1) < (t−T(t))} (5)

X(t+1) = BEST-NEIGHBOR(NA(X(t))) (6)

Rules to determine the prohibition parameter by reacting tothe repetition of
previously-visited configurations have been proposed in [26] (reactive-TS, RTSfor
short). In addition, there are situations where the single reactive mechanism onT
is not sufficient to avoid long cycles in the search trajectory and therefore a second
reaction is needed [26].

The prohibition parameterT used in equation (3) is related to the amount of
diversification: the largerT, the longer the distance that the search trajectory must
go before it is allowed to come back to a previously visited point. In particular, the
following relationships between prohibition and diversification are demonstrated
in [11] for a search space consisting of binary strings with basic moves flipping
individual bits:

• The Hamming distanceH between a starting point and successive point along
the trajectory is strictly increasing forT +1 steps.

H(X(t+∆ t),X(t)) = ∆ t for ∆ t ≤ T +1

• The minimum repetition intervalRalong the trajectory is 2(T +1).

X(t+R) = X(t) ⇒ R≥ 2(T +1)

In general, because a larger prohibition value implies a more limited choice of
moves, it makes sense to setT to the smallest value that guarantees a sufficient
degree of diversification
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In reactive-TS[26] the prohibitionT is determined through feedback (i.e.,reac-
tive) mechanisms during the search.T is equal to one at the beginning (the inverse
of a given move is prohibited only at the next step), it increases only when there is
evidencethat diversification is needed, it decreases when this evidence disappears.
The evidence that diversification is needed is signaled by the repetition of previ-
ously visited configurations. This criterion needs to be generalized when the search
space dimension becomes very large, so that the exact repetition of configurations
can become very rare even if the trajectory is confined. In this case, one can monitor
an appropriate distance measure from a given starting configuration. An insufficient
growth if the distance as a function of the number of steps canbe taken as evidence
of confinement, see for example [20].

A more radicalescapemechanism can be triggered when the basic prohibition
mechanism is not sufficient to guarantee diversification. In[26] the escape (a num-
ber of random steps) is triggered when too many configurations are repeated too
often. Further details about applications, implementation and data structures can be
found in [14].

A reactive determination of theT value can change the process of escaping from
a local minimum in a qualitative manner: one obtains an (optimistic) logarithmic
increase in thestrict-TSalgorithm, and a (pessimistic) increase that behaves like the
square root of the number of iterations in the reactive case [14].

Robust stochastic algorithms related to the previously described deterministic
versions can be obtained in many ways. For example, prohibition rules can be sub-
stituted withprobabilistic generation-acceptance ruleswith large probability for al-
lowed moves, small for prohibited ones, see for example theprobabilistic-TS[68].
Asymptotic results for TS can be obtained in probabilistic TS [56]. In a different
proposal (robust-TS) the prohibition parameter is randomly changed between an
upper and a lower bound during the search [122].

If the neighborhood evaluation is expensive, the exhaustive evaluation can be
substituted with a partialstochastic sampling: only a partial list of candidates is
examined before choosing the best allowed neighbor.

Finally, other possibilities which are softer than prohibitions exist. For example
the HSAT [67] variation of GSAT introduces a tie-breaking rule into GSAT: if more
moves produce the same (best)∆ f , the preferred move is the one that has not been
applied for the longest span. HSAT can be seen as a “soft” version of Tabu Search:
while TS prohibits recently-applied moves, HSAT discourages recent moves if the
same∆ f can be obtained with moves that have been “inactive” for a longer time.

2.2 Reacting on the neighborhood

Local search based on perturbing a candidate solution is a first paradigmatic case
where simple online adaptation and learning strategies canbe applied. LetX be the
search space,X(t) the current solution at iteration (“time”)t. N(X(t)) is the neigh-
borhood of pointX(t), obtained by applying a set of basic movesµ0,µ1, . . . ,µM to
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the current configuration:

N(X(t)) = {X ∈X such thatX = µi(X
(t)), i = 0, . . . ,M}

Local search starts from an admissible configurationX(0) and builds asearch
trajectory X(0), . . . ,X(t+1). The successor of the current point is a point in the neigh-
borhood with a lower value of the functionf to be minimized. If no neighbor has
this property, i.e., if the configuration is a local minimizer, the search stops.

Y ← IMPROVING-NEIGHBOR( N(X(t)) ) (7)

X(t+1) =

{

Y if f (Y) < f (X(t))

X(t) otherwise (search stops)
(8)

IMPROVING-NEIGHBOR returns an improving element in the neighborhood. In a
simple case this is the element with the lowestf value, but other possibilities exist,
as we will see in what follows.

Online learning strategies can be applied in two contexts: selection of the neigh-
bor or selection of the neighborhood. While these strategies are part of the standard
bag of tools, they in fact can be seen as simple forms of reaction to the recent history
of evaluations.

When the neighborhood is fixed, one can modify the unresponsive strategy which
considers all neighbors before selecting one of the best moves (best-improvement
local search) and obtain a very simple reactive strategy like FIRSTMOVE. FIRST-
MOVE accepts the first improving neighbor if one is found before examining all
candidates. The simple adaptation is clear: the exact number of neighbors evaluated
before deciding the next move depends not only on the instance but on the particular
local properties in the configuration space around the current point. On the average,
less neighbors will need to be evaluated at the beginning of the search, when finding
an improving move is simple, more neighbors when the trajectory goes deeper and
deeper into a given local minimum attractor.

When the neighborhood is changed depending on the local configuration one
obtains for example the Variable Neighborhood Search (VNS)[72]. VNS considers
a a set of neighborhoods, defineda priori at the beginning of the search, and then
uses the most appropriate one during the search.

Variable Neighborhood Descent [74] (VND), see Fig. 1, uses the default neigh-
borhood first, and the ones with a higher number only if the default neighborhood
fails (i.e., the current point is a local minimum forN1), and only until an improving
move is identified, after which it reverts back toN1. When VND is coupled with
an ordering of the neighborhoods according to thestrengthof the perturbation, one
realizes the principleuse the minimum strength perturbation leading to an improved
solution, which is present also in more advanced RSO methods. The consideration
of neighborhoods of increasing diameter (distance of its members w.r.t. the starting
configuration) can be considered as a form ofdiversification. A strong similarity
with the design principle of Reactive Tabu Search is present, see later in this chap-
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1. function VariableNeighborhoodDescent (N1, . . .,Nkmax)
2. repeat until no improvement or max CPU time elapsed
3. k← 1 // index of the default neighborhood
4. while k≤ kmax:
5. X′← BestNeighbor (Nk(X)) // neighborhood exploration
6. if f (X′) < f (X)
7. X← X′ ; k← 1 // success: back to default neighborhood
8. else
9. k← k+1 // try with the following neighborhood

Fig. 1 The VND routine. Neighborhoods with higher numbers are considered only if the default
neighborhood fails and only until an improving move is identified. X is the current point.

ter, where diversification through prohibitions is activated when there is evidence of
entrapment in an attraction basin and gradually reduced when there is evidence that
a new basin has been discovered.

An explicitly reactive-VNS is considered in [35] for the VRPTW problem (vehi-
cle routing problem with time windows), where a construction heuristic is combined
with VND using first-improvement local search. Furthermore, the objective function
used by the local search operators is modified to consider thewaiting time to escape
from a local minimum. A preliminary investigation about a self-adaptive neighbor-
hood ordering for VND is presented in [78]. The different neighborhoods are ranked
according to their observed benefits in the past.

Let’s also note some similarities between VNS and the adaptation of the search
region in stochastic search technique for continuous optimization, see the discus-
sion later in this chapter. Neighborhood adaptation in the continuous case, see for
example the Affine Shaker algorithm in [25], is mainly considered to speed-up con-
vergence to a local minimizer, not to jump to nearby valleys.

A related possibility to cause a more radical move when simple ones are not
sufficient to escape from a local minimum isiterated local search(ILS). ILS is based
on building a sequence of locally optimal solutions by perturbing the current local
minimum and applying local search after starting from the modified solution. The
work about large-step Markov chain of [96, 94, 95, 126] contains very interesting
results coupled with a clear description of the principles.

In VNS minimal perturbations maintain the trajectory in thestarting attraction
basin, while excessive ones bring the method closer to a random sampling, therefore
loosing the boost which can be obtained by the problem structural properties. A
possible solution consists of perturbing by a short random walk of a length which is
adaptedby statistically monitoring the progress in the search. Memory and reactive
learning can be used in a way similar to that of [20] to adapt the strengthof the
perturbation to the local characteristics in the neighborhood of the current solution
for the considered instance. Creative perturbations can beobtained by temporarily
changing the objective function with penalties so that the current local minimum is
displaced, like in [31, 45], see also the later description about reactively changing
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the objective function, or byfixingsome configuration variables and optimizing sub-
parts of the problem [92].

2.3 Reacting on the annealing schedule

A widely popular stochastic local search technique is the Simulated Annealing (SA)
method [88] based on the theory of Markov processes. The trajectory is built in a
randomized manner: the successor of the current point is chosen stochastically, with
a probability that depends only on the difference inf value w.r.t. the current point
and not on the previous history.

Y ← NEIGHBOR( N(X(t)) )

X(t+1) ←











Y if f (Y)≤ f (X(t))

Y if f (Y) > f (X(t)), with probabilityp = e−( f (Y)− f (X(t)))/T

X(t) if f (Y) > f (X(t)), with probability(1− p).

(9)

SA introduces atemperatureparameterT which determines the probability that
worsening moves are accepted: a largerT implies that more worsening moves
tend to be accepted, and therefore a larger diversification occurs. An analogy with
energy-minimization principles in physics is present, andthis explains the “temper-
ature term”, as well as the term “energy” to refer to the function f .

If the local configuration is close to a local minimizer and the temperature is
already very small in comparison to the upward jump which hasto be executed to
escape from the attractor, the system willeventuallyescape, but an enormous num-
ber of iterations can be spent around the attractor. The memoryless property (current
move depending only on the current state, not on the previoushistory) makes SA
look like a dumb animal indeed. It is intuitive that a better performance can be
obtained by using memory, by self-analyzing the evolution of the search, by devel-
oping simple models and by activating more directescapestrategies aiming at a
better usage of the computational resources devoted to optimization.

Even if a vanilla version of a cooling schedule for SA is adopted (starting temper-
atureTstart, geometric cooling scheduleTt+1 = α Tt , with α < 1, final temperature
Tend), a sensible choice has to be made for the three involved parametersTstart, α, and
Tend. The work [130] suggests to estimate the distribution off values. The standard
deviation of the energy distribution defines the maximum-temperature scale, while
the minimum change in energy defines the minimum-temperature scale. These tem-
perature scales tell us where to begin and end an annealing schedule.

The analogy with physics is further pursued in [89], where concepts related to
phase transitionsandspecific heatare used. The idea is that a phase transition is
related to solving a sub-part of a problem. After a phase transition corresponding to
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the big reconfiguration occurs, finer details in the solutionhave to be fixed, and this
requires a slower decrease of the temperature.

When the parametersTstart andα are fixeda priori, the useful span of CPU time
is practically limited. After the initial period the temperature will be so low that
the systemfreezesand, with large probability, no tentative moves will be accepted
anymore in the remaining CPU time of the run. For a new instance, guessing ap-
propriate parameter values is difficult. Furthermore, in many cases one would like
to use ananytime algorithm, so that longer allocated CPU times are related to pos-
sibly better and better values until the user decides to stop. Non-monotonic cooling
schedulesare a reactive solution to this difficulty, see [46, 105, 1]. The work [46]
suggests to reset the temperature once and for all at a constant temperature high
enough to escape local minima but also low enough to visit them, for example, at
the temperatureTfound when the best heuristic solution is found in a preliminary SA
simulation.

A non-monotonic schedule aims at: exploiting an attractionbasin rapidly by de-
creasing the temperature so that the system can settle down close to the local mini-
mizer,increasing the temperatureto diversify the solution and visit other attraction
basins, decreasing again after reaching a different basin.The implementation details
have to do with determining anentrapmentsituation, for example from the fact that
no tentative move is accepted after a sequencetmax of tentative changes, and deter-
mining the detailed temperature decrease-increase evolution as a function of events
occurring during the search [105, 1]. Enhanced versions involve a learning process
to choose a proper value of the heating factor depending on the system state. Let’s
note that similar “strategic oscillations” have been proposed in tabu search, in par-
ticular in the reactive tabu search of [26], see later in thischapter, and in variable
neighborhood search.

Modifications departing from the exponential acceptance rule and other adap-
tive stochastic local search methods for combinatorial optimization are considered
in [99, 100]. The authors appropriately note that the optimal choices of algorithm
parameters depend not only on the problem but also on the particular instance and
that a proof of convergence to a globally optimum is not a selling point for a spe-
cific heuristic: in fact a simple random sampling, or even exhaustive enumeration (if
the set of configurations is finite) will eventually find the optimal solution, although
they are not the best algorithms to suggest. A simple adaptive technique is suggested
in [100]: a perturbation leading to a worsening solution is accepted if and only if a
fixed number of trials could not find an improving perturbation. The temperature pa-
rameter is eliminated. The positive performance of the method in the area of design
automation suggests that the success of SA is “due largely toits acceptance of bad
perturbations to escape from local minima rather than to some mystical connection
between combinatorial problems and the annealing of metals.”

“Cybernetic” optimization is proposed in [60] as a way to useprobabilistic in-
formation for feedback during a run of SA. The idea is to consider more runs of SA
running in parallel and to aim atintensifying the search(by lowering the tempera-
ture parameter) when there is evidence that the search is converging to the optimum
value.
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The application of SA to continuous optimization (optimization of functions de-
fined on real variables) is pioneered by [48]. The basic method is to generate a new
point with a random step along a directioneh, to evaluate the function and to ac-
cept the move with the exponential acceptance rule. One cycles over the different
directionseh during successive steps of the algorithm. A first critical choice has to
do with the range of the random step along the chosen direction. A fixed choice
obviously may be very inefficient: this opens a first possibility for learningfrom the
local f surface. In particular a new trial pointx′ is obtained from the current pointx
as:

x′ = x+ RAND(−1,1)vheh

whereRAND(−1,1) returns a random number uniformly distributed between -1 and
1, eh is the unit-length vector along directionh, andvh is the step-range parameter,
one for each dimensionh, collected into the vectorv. Thevh value is adapted during
the search to maintain the number ofacceptedmoves at about one-half of the total
number of tried moves. Although the implementation is already reactive and based
on memory, the authors encourage more work so that a “good monitoring of the
minimization process” can deliver precious feedback aboutsome crucial internal
parameters of the algorithm.

In Adaptive Simulated Annealing (ASA), also known as very fast simulated re-
annealing [82], the parameters that control the temperature cooling schedule and the
random step selection are automatically adjusted according to algorithm progress.
If the state is represented as a point in a box and the moves as an oval cloud around
it, the temperature and the step size are adjusted so that allof the search space
is sampled at a coarse resolution in the early stages, while the state is directed to
promising areas in the later stages.

A reactive determination of parameters in an advanced simulated annealing ap-
plication for protein folding is presented in [75].

2.4 Reacting on the objective function

In the above methods, the objective functionf remains the guiding source of in-
formation to select the next move. Reactive diversificationto encourage exploration
of areas which are distant from a locally optimal configuration has been considered
though an adaptive selection of the neighborhood or of the neighbor based on the lo-
cal situation and on the past history of the search process. Amore direct way to force
diversification is to directly prohibit configurations or moves to create a pressure to
reach adequate distances from a starting point.

This part considers a different way to achieve similar results, by reactively chang-
ing the function guiding the local search. For example, the act of visiting a local min-
imum may cause a local increase of the evaluation function value so that the point
becomes less and less appealing, until eventually the trajectory is gently pushed to
other areas. Of course, the real objective function values and the corresponding con-
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figurations are saved into memory before applying the modification process. The
physics analogy is that of pushing a ball out of a valley by progressively raising the
bottom of the valley.

A relevant problem for which objective function modifications have been ex-
tensively used is maximum satisfiability (MAX-SAT): the input consists of logic
variables — with false and true values — and the objective is to satisfy the maxi-
mum number of clauses (a clause is the logical OR of literals,a literal is a variable
or its negation). The decision version is called SAT, one searches for a variable
assignment, if any exists, which makes a formula true.

The influential algorithm GSAT [117] is based on local searchwith the standard
basic moves flipping the individual variables (from false totrue andvice versa).
Different noise strategies to escape from locally optimal configurations are added
to GSAT in [115, 116]. In particular, the GSAT-with-walk algorithm introduces ran-
dom walk moves with a certain probability. A prototypical evaluation function mod-
ification algorithm is the breakout method proposed in [98] for the related constraint
satisfaction problem. The cost is measured as the sum of the weights associated to
the violated constraints. Each weight is one at the beginning, at a local minimum
the weight of each nogood is increased by one until one escapes from the given
local minimum (a breakout occurs). Clause-weighting has been proposed in [114]
for GSAT. A positive weight is associated to each clause to determine how often
the clause should be counted when determining which variable to flip. The weights
are dynamically modified during problem solving and the qualitative effect is that
of “filling in” local optima while the search proceeds. Clause-weighting and the
breakout technique can be considered as “reactive” techniques where a repulsion
from a given local optimum is generated in order to induce an escape from a given
attraction basin.

New clause-weighing parameters are introduced and therefore new possibilities
for tuning the parameters based on feedback from preliminary search results. The
algorithm in [113] suggests to use weights to encourage morepriority on satisfy-
ing the “most difficult” clauses. One aims atlearning how difficult a clause is to
satisfy. These hard clauses are identified as the ones which remain unsatisfied after
a try of local search descent followed by plateau search. Their weight is increased
so that future runs will give them more priority when pickinga move. More algo-
rithms based on the same weighting principle are proposed in[63, 64], where clause
weights are updated after each flip: the reaction from the unsatisfied clauses is now
immediate as one does not wait until the end of a try (weightedGSAT or WGSAT).
If weights are only increased, after some time their size becomes large and their
relative magnitude will reflect the overall statistics of the SAT instance, more than
the local characteristics of the portion of the search spacewhere the current con-
figuration lies. To combat this problem, two techniques are proposed in [64], either
reducingthe clause weight when a clause is satisfied, or storing the weight incre-
ments which took place recently, which is obtained by a weight decay scheme (each
weight is reduced by a factorφ before updating it). Depending on the size of the in-
crements and decrements, one achieves “continuously weakening incentives not to
flip a variable” instead of the strict prohibitions of Tabu Search. The second scheme
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takes therecency of movesinto account, the implementation is through a weight
decay scheme updating so that each weight is reduced before apossible increment
by δ if the clause is not satisfied:

wi ← φ wi + δ

where one introduces a decay rateφ and a “learning rate”δ . A faster decay (lowerφ
value) will limit the temporal extension of the context and imply a faster forgetting
of old information. A critique of somewarpingeffects that a clause-weighting dy-
namic local search can create on the fitness surface is present in [123]: in particular
let’s note that the fitness surface is changed in a global way after encountering a
local minimum. Points which are very far from the local minimum, but which share
some of the unsatisfied clauses, will also see their values changed.

A more recent proposal of a dynamic local search (DLS) for SATis in [124].
The authors start from the Exponentiated Sub-Gradient (ESG) algorithm [112],
which alternates search phases and weight updates, and develop a scheme with low
time complexity of its search steps: Scaling and Probabilistic Smoothing (SAPS).
Weights of satisfied clauses are multiplied byαsat, while weights of unsatisfied
clauses are multiplied byαunsat, then all weights are smoothed towards their mean
w̄: w← w ρ +(1−ρ) w̄. A reactive versionof SAPS (RSAPS) is then introduced
that adaptively tunes one of the algorithm’s important parameters.

A similar approach of dynamically modifying the objective function has been
proposed with the term of Guided Local Search (GLS) [127, 128] for other appli-
cations. GLS aims at enabling intelligent search schemes that exploit problem- and
search-related information to guide a local search algorithm. Penalties depending
on solution features are introduced and dynamically manipulated to distribute the
search effort over the regions of a search space. A penalty formulation for TSP in-
cluding memory-based trap-avoidance strategies is proposed in [129]. One of the
strategies avoids visiting points that are close to points visited before, a generaliza-
tion of the previously described STRICT-TS strategy. A recent algorithm with an
adaptive clause weight redistributionis presented in [83], it adopts resolution-based
preprocessing and reactive adaptation of the total amount of weight to the degree of
stagnation of the search.

Let us note that the use of a dynamically modified (learned) evaluation function
is related to the machine learning technique ofreinforcement learning(RL). Early
applications of RL in the area of local search is presented in[34, 33]. Some rein-
forcement learning approaches for optimization are also discussed in [8]. Recent
work includes [15], on-the-fly parameter tuning for evolutionary algorithms in [55],
and the presentation in [14].
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3 Applications of Reactive Search Optimization

It must be noted that Reactive Search Optimization is not a rigid algorithm but
a general framework: specific algorithms have been introduced for unconstrained
and constrained tasks, with different stochastic mechanisms and rules for selecting
neighbors. As it usually happens in heuristics, the more specific knowledge about a
problem is used, the better the results. Nonetheless, it wasoften the case that sim-
ple RSO versions realized with very limited effort could duplicate the performance
of more complex schemes because of their simple embedded feedback loop, and
without intensive parameter and algorithm tuning. A long-term goal of RSO is the
progressive shift of the learning capabilities from the algorithm user to the algorithm
itself, through machine learning techniques.

The RSO framework and related algorithms and tools have beenand are being
applied to a growing number of “classical” discrete optimization problems, continu-
ous optimization tasks, and real-world problems arising inwidely different contexts.
The Web, see for example Google scholar, lists thousands of citations to the seminal
papers, the following list is a selection of some applications we are aware of. We are
always happy to hear from users and developers interested inRSO principles and
applications.

In the following we summarize some applications in “classical” combinatorial
tasks in Section 3.1, where by classical we mean abstract definitions of problems
which have been extensively studied in the Computer Scienceand Operations Re-
search community.

Then we present applications in the area of neural networks in Section 3.2, where
RSO has been used to solve the optimization problems relatedto machine learning.
Let’s note that the synergy between optimization and machine learning is explored
in the opposite direction in this case, i.e., of using optimization to solve machine
learning tasks.

Then we discuss versions of RSO for continuous optimizationtasks in Section
3.3.

Finally, in Section 3.4, we present some applications to problems which are
closer to the real application areas. These problems are of course related to their
abstract and clean definitions but usually contains more details and require more
competence in the specific area to make substantial progress.

3.1 Classic combinatorial tasks

The seminal paper about RSO for Tabu Search (Reactive Tabu Search) presented
preliminary experimental results on the 0-1 Knapsack Problem, and on the Quadratic
Assignment Problem [26]. A comparison with Simulated Annealing on QAP tasks
is contained in [27]. An early experimental comparison of Reactive Search Opti-
mization with alternative heuristics (Repeated Local Minima Search, Simulated An-
nealing, Genetic Algorithms and Mean Field Neural Networks) is presented in [28].
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An application of a self-controlling software approach to Reactive Tabu Search is
presented in [57] with results on the QAP problem.

A reactive local search-based algorithm (adaptive memory search) for the 0/1-
Multidemand Multidimensional knapsack problem (0/1-MDMKP) is proposed in
[5]. The 0/1-MDMKP represents a large class of important real-life problems, in-
cluding portfolio selection, capital budgeting, and obnoxious and semi-obnoxious
facility location problems. A different application is considered in [76] for the dis-
junctively constrained knapsack problem (DCKP), a variantof the standard knap-
sack problem with special disjunctive constraints. A disjunctive constraint is a cou-
ple of items for which only one item is packed.

A reactive tabu search algorithm for Minimum Labeling Spanning Tree is con-
sidered in [39, 40], together with other meta-heuristics. The problem is as follows:
Given a graph G with a color (label) assigned to each edge one looks for a span-
ning tree of G with the minimum number of different colors. The problem has
several applications in telecommunication networks, electric networks, multi-modal
transportation networks, among others, where one aims at ensuring connectivity by
means of homogeneous connections.

The graph partitioning problem has been a test case for advanced local search
heuristics starting at least from the seminal Kernighan andLin paper [84], which
proposes a variable-depth schemes. This is is fact a simple prohibition-based (tabu)
scheme where swaps of nodes among the two sets of the partitions are applied,
and the just swapped nodes are kept fixed during a sequence of tentative moves
in search of an improving chain. Greedy, Prohibition-based, and Reactive Search
Optimization Heuristics for Graph Partitioning are proposed and compared in [11],
Multilevel Reactive Tabu Search techniques, based on producing coarse versions of
very large graphs are considered for Graph Partitioning in [10].

A reactive tabu search version for the vehicle routing problem with time windows
is designed in [44], while a version of the vehicle routing problem with back-hauls
is considered in[50] and [104]. A Reactive Variable Neighborhood Search for the
Vehicle-Routing Problem with Time Windows is proposed in [35]. Vehicle routing
with soft time windows and Erlang travel times is studied in [109].

An RSO scheme is applied to the maximum clique problem in graphs in [19]
[23]. A clique is a subset of nodes which are mutually interconnected, the prob-
lem is related to identifying densely interconnected communities and, in general, to
clustering issues. A relaxed quasi-clique version of the problem where some edged
may be missing is addressed in [38].

The work in [132] designs Reactive Prohibition-Based Ant Colony Optimiza-
tion (RPACO): A New Parallel Architecture for Constrained Clique Sub-Graphs.
This paper introduces a new algorithm that combines the stigmergic capabilities
of Ant Colony Optimization (ACO) with local search heuristics to solve the maxi-
mum and maximum-weighted clique problem. The introduced Reactive Prohibition-
based Ant Colony Optimization (RPACOMCP) complements the intelligent ant
colony search with a prohibition-based diversification technique, where the amount
of diversification is determined in an automated way througha feedback (history-
sensitive) scheme.
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Maximum satisfiability is considered in [21], [20] [97], reactive SAPS (scaling
and probabilistic smoothing) [124]. Constraint satisfaction in [102]. Reactive local
search techniques for the maximumk-conjunctive constraint satisfaction problem
(MAX- k-CCSP) in [22]. A worst-case analysis of tabu search as a function of the
tabu list length for the MAX-TWO-SAT problem is presented in[97], with applica-
tions also to a reactive determination of the prohibition.

In [111] the authors address the problem of computing a graphsimilarity measure
which is generic in the sense that other well known graph similarity measures can
be viewed as special cases of it. They propose and compare twoalgorithms: an Ant
Colony Optimization based algorithm and a Reactive Search Optimization and show
that they obtain complementary results.

A classification of methods to manage the prohibition period(Tabu tenure) in the
literature is presented in [54] together with a new reactiveTabu tenure adaptation
mechanism. The generic method is tested on the k-coloring problem.

A Reactive Tabu Search algorithm with variable clustering for the Unicost Set
Covering Problem is proposed in [86]. Unicost SCPs arise in graph theory when one
must select a minimum covering of edges by nodes or nodes by cliques. In addition,
in many practical applications (crew scheduling, political redistricting, conservation
biology, etc.) the relative variation in the weights may be small enough to warrant a
unicost model.

3.2 Neural networks and VLSI systems with learning capabilities

While derivative-based methods for training from exampleshave been used with
success in many contexts (error back-propagation is an example in the field of neu-
ral networks), they are applicable only to differentiable performance functions and
are not always appropriate in the presence of local minima. In addition, the calcula-
tion of derivatives is expensive and error-prone, especially if special-purpose VLSI
hardware is used. A radically different approach is used in [29]: the task is trans-
formed into a combinatorial optimization problem (the points of the search space
are binary strings), and solved with the Reactive Search Optimization algorithm. To
speed up the neighborhood evaluation phase a stochastic sampling of the neighbor-
hood is adopted and a “smart” iterative scheme is used to compute the changes in
the performance function caused by changing a single weight. RSO escapes rapidly
from local minima, it is applicable to non-differentiable and even discontinuous
functions and it is very robust with respect to the choice of the initial configuration.
In addition, by fine-tuning the number of bits for each parameter one can decrease
the size of the search space, increase the expected generalization and realize cost-
effective VLSI.

Reactive Tabu Search in Semi-supervised Classification is proposed in [133].
With a linear kernel their RTS implementation can effectively find optimal global
solutions for the primal Mixed Integer Programming Transductive Support Vector
Machine (MIP-TSVM) with relatively large problem dimension.
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In contrast to the exhaustive design of systems for pattern recognition, control,
and vector quantization, an appealing possibility consists of specifying a general
architecture, whose parameters are then tuned through Machine Learning (ML).
ML becomes a combinatorial task if the parameters assume a discrete set of values:
the Reactive Tabu Search (RTS) algorithm permits the training of these systems
with low number of bits per weight, low computational accuracy , no local minima
“trapping”, and limited sensitivity to the initial conditions [17, 16].

Special-purpose VLSI modules have been developed to be usedas components of
fully autonomous massively-parallel systems for real-time adaptive applications. In
contrast to many “emulation” approaches, the developed VLSI completely reflects
the combinatorial structure used in the learning algorithms.

Applications considered are in the area of pattern recognition (Optical Character
Recognition), event triggering in High Energy Physics [3],control of non-linear
systems [28], compression of EEG signals [24]. The first product of a joint project
between University of Trento, INFN and IRST was the TOTEM chip [16, 18], and
more general special-purpose VLSI realizations are described in [4, 3]. A parallel
neurochip for neural networks implementing the Reactive Tabu Search algorithm
and application case studies are presented in [52]. An FPGA implementation of the
TOTEM chip is presented in [6].

3.3 Continuous optimization

A simple benchmark on a function with many suboptimal local minima is consid-
ered in [29], where a straightforward discretization of thedomain is used. A novel
algorithm for the global optimization of functions (C-RTS)is presented in [30],
in which a combinatorial optimization method cooperates with a stochastic local
minimizer. The combinatorial optimization component, based on Reactive Search
Optimization, locates the most promising boxes, where starting points for the local
minimizer are generated. In order to cover a wide spectrum ofpossible applications
with no user intervention, the method is designed with adaptive mechanisms: in ad-
dition to the reactive adaptation of the prohibition period, the box size is adapted
to the local structure of the function to be optimized ( boxesare larger in “flat”
regions, smaller in regions with a “rough” structure). An application of intelligent
prohibition-based strategies to continuous optimizationis presented in [43].

A Reactive Affine Shaker method for continuous optimizationis studied in [36,
37]. The work presents an adaptive stochastic search algorithm for the optimiza-
tion of functions of continuous variables where the only hypothesis is the pointwise
computability of the function. The main design criterion consists of the adaptation
of a search region by an affine transformation which takes into account the local
knowledge derived from trial points generated with uniformprobability. Heuristic
adaptation of the step size and direction allows the largestpossible movement per
function evaluation. The experimental results show that the proposed technique is,
in spite of its simplicity, a promising building block to consider for the develop-
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ment of more complex optimization algorithms, particularly in those cases where
the objective function evaluation is expensive.

A Gregarious Particle Swarm Optimizer (GPSO) is proposed in[106]. The par-
ticles (the different local searchers) adopt a reactive determination of the step size,
based on feedback from the last iterations. This is in contrast to the basic parti-
cle swarm algorithm, in which no feedback is used for the self-tuning of algorithm
parameters. The novel scheme presented, when tested on a benchmark for contin-
uous optimization, besides generally improving the average optimal values found,
reduces the computation effort.

3.4 Real-world applications

A real-world application in the area of electric power distribution: service restora-
tion in distribution systems is studied in [125], fast optimal setting for voltage con-
trol equipment considering interconnection of distributed generators is proposed
in [103], Service Restoration in Distribution Systems in [66], distribution load trans-
fer operation in [65].

A continuation of the work in [44] is proposed in [108] to aid in the coordination
and synchronization of the production and delivery of multi-product newspapers to
bulk delivery locations. The problem is modeled as an open vehicle routing prob-
lem with time windows and zoning constraints. The methodology is applied to the
newspaper production and distribution problem in a major metropolitan area.

In the field of industrial production planning, [58] studiesapplications of modern
heuristic search methods to pattern sequencing problems. Flexible job-shop schedul-
ing is studied in [42] and [41]. The plant location problem isstudied in [53]. The
work [59] is dedicated to solving the continuous flow-shop scheduling problem
Adaptive self-tuning neurocontrol is considered in [107]:the objective is to con-
struct an adaptive control scheme for unknown time-dependent nonlinear plants.

Various applications of RSO focussed on problems arising inthe design and
management of telecommunication networks. RSO for traffic grooming in optical
WDM networks is considered in [12]. Optimal conformance test selection is studied
in [51]. Conformance testing is used to increase the reliability of telecommunica-
tion applications. Locating Hidden Groups in Communication Networks Using Hid-
den Markov Models is addressed in [93]. A communication network is a collection
of social groups that communicate via an underlying communication medium. In
such a network, a hidden group may try to camouflage its communications amongst
the typical communications of the network. The task of increasing internet capac-
ity is considered in [62]. The multiple-choice multi-dimensional knapsack problem
(MMKP) with applications to service level agreements and multimedia distribu-
tion is studied in [76] and [77]. They consider the model of allocation resources
and the dynamic adaptation of system of resources for multimedia multi-sessions.
High quality solutions, reaching the optimal/best for several instances are obtained
through a reactive local search scheme. In the area of wireless and cellular commu-
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nication networks, the work in [13] considers the Optimal Wireless Access Point
Placement for Location-Dependent Services, and the work in[61] proposes a tabu
search heuristic for the dimensioning of 3G multi-service networks.

A heuristic approach based on a hybrid operation of reactivetabu search (RTS)
and adaptive memory programming (AMP) is proposed in [91] tosolve the vehicle
routing problem with backhauls (VRPB). One is given a set of customers, some of
which are linehauls (delivery points) and some are backhauls (collection points), a
set of homogeneous vehicles and a depot. A distinguishing feature of this model is
that all backhaul customers must be visited after all linehaul customers are served
on each route. RTS is used with an escape mechanism which manipulates different
neighborhood schemes in order to continuously balance intensification and diversi-
fication during the search process. The adaptive memory strategy takes the search
back to the unexplored regions of the search space by maintaining a set of elite so-
lutions and using them strategically with the RTS. The authors of [101] address the
pickup and delivery problem with time windows using reactive tabu search.

Real-time dispatch of trams in storage yards is studied in [131].
In the military sector, simple versions of Reactive Tabu Search are considered

in [87] in a comparison of techniques dedicated to designingan unmanned aerial
vehicle (UAV) routing system. Hierarchical Tabu Programming is used in [7] for
Finding the Underwater Vehicle Trajectories. Aerial reconnaissance simulations is
the topic of [110]. The authors of [9] use an adaptive tabu search approach for solv-
ing the aerial fleet refueling problem.

In the automotive sector, RSO is used in [71] for improving vehicle safety. In de-
tail, a mixed reactive tabu search method is used to optimizethe design of a vehicle
B-pillar subjected to roof crush.

Reactive Tabu Search and sensor selection in active structural acoustic control
problems is considered in [85].

Visual representation of data through clustering is considered in [47].
The solution of the engineering roof truss design problem isdiscussed in [70]

An application of reactive tabu search for designing barrelled cylinders and domes
of generalized elliptical profile is studied in [32]. The cylinders and domes are opti-
mized for their buckling resistance when loaded by static external pressure by using
a structural analysis tool.

A Reactive Stochastic Local Search Algorithms is used to solve the Genomic
Median Problem in [90]. The genomic median problem is an optimization problem
inspired by a biological issue: it aims at finding the chromosome organization of
the common ancestor to multiple living species. It is formulated as the search for a
genome that minimizes a rearrangement distance measure among given genomes.
An adaptive bin framework search method for a beta-sheet protein homopolymer
model is used in [120], protein folding is studied in [118, 119]. Additional applica-
tions in bio-informatics include for example [120], which proposes an adaptive bin
framework search method for a beta-sheet protein homopolymer model. A novel
approach is studied based on the use of a bin framework for adaptively storing and
retrieving promising locally optimal solutions. Each bin holds a set of conformations
within a certain energy range and an one uses an adaptive strategy for restarting a
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given search process with a conformation retrieved from these bins when the search
stagnates. An adaptive mechanisms chooses which conformations should be stored,
based on the set of conformations already stored in memory, and biases choices
when retrieving conformations from memory in order to overcome search stagna-
tion. The energy and diversity thresholds for each bin are dynamically modified
during the search process.

An adaptive meta-search method that alternates between twodistinct modes of
the search process at different levels is proposed in [119] for protein folding. The
high level process ensures that unexplored promising partsof the search landscape
are visited and the low-level search provides the thorough exploration of local neigh-
borhoods. Multiple search processes are used in an intelligent way.
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