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1 Introduction

The final purpose of Reactive Search Optimization (RSO) srtplify the life for
the final user of optimization. While researchers enjoygtasig algorithms, testing
alternatives, tuning parameters and choosing solutioarsels — in fact this is part
of their daily life — the final users’ interests are differeslving a problem in the
most effective way without requiring a costly adaptatiod &arning curve.

Reactive Search Optimization has to do wiglarning for optimizing with the
insertion of a machine learning component into a solutimtess so that algorithm
selection, adaptation, integration, are done in an autednaty, and a compre-
hensive solution is delivered to the final user. The divemsittasks, stochasticity,
dynamicity which is intrinsic in real-world tasks can be Weegith in a seamless
manner. The interaction with the final user is simplified aratlmhuman: no com-
plex technical questions are asked about parameters, ddbths is kept on the
problem’s detailed characteristics and user preferenodsct, the user wants to
maintain control of the problem definition, including of eea hard and soft con-
straints, preferences, weights. This is the part which cbbe automated, while the
user is happy to delegate issues related to algorithm chaioe tuning.

Needless to say, studying and designing satisfactoryieokito the above final
goal is a long-term enterprise with opportunities for Philsints and researchers of
this century, but we feel that the road is clear and thatmiakry results of interest
abound.

Apart from the above concrete issues related to the final Besctive Search
Optimization also addresses a scientific issue relatectoefroducibility of results
and to the objective evaluation of methods. In fact, if aeliigent user is actively
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in the loop between a parametric algorithm and the solutfanmroblem, judging
about an algorithm in isolation from its user — in some catsesreator — becomes
difficult if notimpossible. Are the obtained results a mefithe algorithm or a merit
of its intelligent user? In some cases the second case hdiitsh explains why even
some naive and simplistic techniques can obtain resuitst@fest if adopted by a
motivated person, not to say by a researcher in love withdtiglgorithm and under
pressure to get something published.
Now that the long-term vision is given, let's come to a mortaded definition.

Reactive Search Optimization (RSO) advocates the integratf machine
learning techniques into search heuristics for solving glem optimization
problems. The wordeactivehints at a ready response to events while alter-
native solutions are tested, through an internal onlinedldaek loop for the
self-tuning of critical parameters. Its strength lies ia thtroduction of high-
level skills often associated to the human brain, such asileafrom the past
experience, learning on the job, rapid analysis of altéreat ability to cope
with incomplete information, quick adaptation to new sitoias and events.

If one considers the dictionary definition oéactive see the box below, the
“ready response to some treatment, situation, or stimukishe part of interest
to us. The contrary in our context is: inactive, inert, up@ssive. For sure, its con-
trary is not proactive! In fact, when the level of automatincreases, the final user
wins, but the work becomes much more challenging for theareber: he has to
be fully proactive to anticipate the different adaptati@eds of a Reactive Search
Optimization algorithm.

re-active

1: of, relating to, or marked by reaction or reactance

2 a: readily responsive to a stimulus b: occurring as a regugtress or emotional

upset

re-ac-tion

Date: circa 1611

1 a: the act or process or an instance of reacting b: resestarapposition to a force,

influence, or movement ...

2: a response to some treatment, situation, or stimulusstuemed reaction to the

news” ...

3: bodily response to or activity aroused by a stimulus: aaetion induced by

vital resistance to another action ; especially : the respaf tissues to a foreign

substance (as an antigen or infective agent) . ..

4: the force that a body subjected to the action of a force faowther body exerts

in the opposite direction

5 a (1): chemical transformation or change : the interaatiochemical entities (2):

the state resulting from such a reaction b: a process inwplefiange in atomic nuclei
(derived from:Merriam-Webster online dictionayy
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Before dwelling on the technical details, let’s briefly mentsome relevant char-
acteristics of Reactive Search Optimization when appliethe context of local
search based processes.

Learningon thejob Real-world problems have a rich structure. While many al-
ternative solutions are tested in the exploration of a $eapace, patterns and
regularities appear. The human brain quickly learns angedriuture decisions
based on previous observations. This is the main inspiratarce for inserting
online machine learning techniques into the optimizatiogiee of RSO.

Rapid generation and analysis of many alternatives Often, to solve a problem
one searches among a large number of alternatives, eachimgghe analysis
of what-if scenarios. The search speed is improved if adtitres are generated
in a strategic manner, so that different solutions are @thatong a trajectory in
the search space exploring wide areas and rapidly expiditie most promising
solutions.

Flexible decision support  Crucial decisions depend on several factors and prior-
ities which are not always easy to describe before startiagsblution process.
Feedback from the user in the preliminary exploration pltasebe incorporated
so that a better tuning of the final solutions takes the end pr&ferences into
account.

Diversity of solutions The final decision is up to the user, not the machine. The
reason is that not all qualitative factors of a problem cart@ded into a com-
puter program. Having a set of diverse near-best altermtt/often crucial for
the decision maker.

Anytime solutions The user decides when to stop searching. A first complete
solution is generated rapidly, better and better ones aduged in the following
search phases. The more the program runs, the bigger thibiptyst identify
excellent solutions, but if you want a solution fast you aséng to get it!

Methodologies of interest for Reactive Search Optimizaiiaclude machine
learning and statistics, in particular neural networksifieial intelligence, rein-
forcement learning, active or query learning.

When one considers theourceof information that is used for the algorithm
selection and tuning process, it is important to stressttiere are at least three
different possibilities:

1. Problem-dependent informatiomhis is related to characteristics of the specific
problem. For example, a local search scheme for the Tray&alesman Prob-
lem needs a different neighborhood definition w.r.t. a saéon the network
partitioning problem.

2. Task-dependent informatioA single problem consists of a set of instances or
tasks with characteristics which can be radically différ&or example, a Trav-
eling Salesman task for delivering pizza among a set loggtio Los Angeles
can be very different from a pizza delivery task in Trentorreahl and pleasant
town in the Alps.
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3. Local properties in configuration spac&/hen one considers a local search
scheme based on perturbation one builds a trajectory ingumation space given
by successive sample points generated by selecting anglragpie local moves.
In poetic terms, one travels along a fitness surface withgaal valleys which
can vary a lot during the trip. For example, the size and depthe attractors
around local minimizers can vary from a reasonably flat s@féo one charac-
terized by deep wells. If a scheme for escaping local minénsizs adapted also
to the local characteristics, better results can be exgecte

Now, the first possibility is the typical source of inforn@tifor offline algorithm
selection and parameter tuning, while the last two possésilare the starting point
for the online schemes of RSO, where parameters are dyniiyntioaed based on
the current optimization state and previous history of #e¥sh process while work-
ing on a specific instance.

Intelligent optimization, a superset of Reactive Searchir@ipation, refers to
a more extended area of research, including online andraffdchemes based on
the use of memory, adaptation, incremental developmentaafets, experimental
algorithmics applied to optimization, intelligent tuniagd design of heuristics.

The RSO approach of learning on the job is to be contrastdu offtline pa-
rameter tuning. This orthogonal approach is studied forgta in [80, 79], that
proposes methods to predict per-instance and per-pararaatéimes with reason-
able accuracy. These predictive models are then used ticpreltich parameter
settings result in the lowest run-time for a given instarices automatically tuning
the parameter values of a stochastic local search (SLS)ithigoon a per-instance
basis by simply picking the parameter configuration thatredjzted to yield the
lowest run-time. An iterated local search (ILS) algoritham the algorithm con-
figuration problem is proposed in [81]. The approach worksfath deterministic
and randomized algorithms and can be applied regardlessofg scenario and
optimization objective.

On-line and off-line strategies are complementary: in,fagen RSO methods
tend to have a number of parameters that remain fixed duregehrch and can
hence be tuned by off-line approaches.

The following part of this chapter is organized as followsstthe different op-
portunities for RSO strategies are listed and briefly conteetrSection 2 describes
different RSO schemes that have been introduced in thatitex. A much more ex-
tended presentation has been recently published in [14n Bample applications
of Reactive Search Optimization principles are illustilateSection 3.

The brevity of this chapter does not allow for a completélgtaind examination:
we ask the omitted authors for forgiveness, and encourager.of novel work to
get in touch with us. The Reactive Search Optimization comitytiand softwaré
web sites are two additional sources of information which lsa mined for more
detailed interests.

Thttp://reactive-search. org/
2http://reactive-search. com
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2 Different reaction possibilities

The design principles of many superficially different teicjues for diversifying the
search in a responsive manner according to the RSO pris@plearning while op-
timizing, are strongly related. The unifying principle et of using online reactive
learning schemes to increase the robustness and to permataids-offusage of
software for optimization.

For brevity we concentrate this review chapter on reactahiques applied
to single local search streams. Other possibilities rdl&abeusing more than one
search stream, a.k.a. population-based methods, gemgtidtlams, evolutionary
techniques, etc. range from adaptive portfolios, to réstaategies, to racing tech-
niques, to intelligent and reactive solver teams [14].

2.1 Reactive prohibitions

It is part of commonsense that the discovery of radically selutions which is
associated to real creativity demands departing from tbalwgay of doing things,
avoiding known solutions. The popular concepts of “laténaiking” and “thinking
outside the box” are related to shifting the point of viewselkving an old problem
with new eyes, discarding pet hypotheses.

Techniques that apply lateral thinking to problems are atigrized by the
shifting of thinking patterns, away from entrenched or jcble thinking to
new or unexpected ideas. A new idea that is the result ofdbteinking is
not always a helpful one, but when a good idea is discoverdusnwvay it is
usually obvious in hindsight, which is a feature laterahking shares with a
joke.

There are a number of mental tools or methods that can be admthy
about lateral thinking. These include the following:

Provocation: Declare the usual perception out of boundgraride some
provocative alternative to the usual situation under aarsition. . . .

As an example see the provocation on cars having squaresvheel

Challenge: Simply challenge the way things have always e or
seen, or the way they are. This is done not to show there ishisgytvrong
with the existing situation but simply to direct your pertieps to exploring
outside the current area.

For example you could challenge coffee cups being produdtdashan-
dle. There is nothing wrong with coffee cups having handeths challenge
is a direction to explore without defending the status quwe fieason for the
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handle seems to be that the cup is often too hot to hold dir&erhaps coffee
cups could be made with insulated finger grips . ..

There are many other techniques. .. All these tools areipahatatters for
circumstances where our normal automatic perceptions atterp matching
tend to keep us trapped “within the box”.

(derived from Wikipedia “lateral thinking” voice, Jan 2008

When one reflects about the above connections, it is notisurgito see ideas re-
lated to using “prohibitions” to encourage diversificateomd exploration (the tech-
nical terms for true creativity in the context of optimizatiheuristics) in different
contexts and different times. For example, they can be foutige denial strategy
of [121]: once common features are detected in many subapsotutions, they are
forbidden

The full blossoming of “intelligent prohibition-based hetics” starting from
the late eighties is greatly due to the role of F. Glover inghgposal and diffusion
of arich variety of meta-heuristic tools under the umbrefldabu Search (TS) [68,
69], but see also [73] for an independent seminal paper.atigent that Glover's
ideas have been a source of inspiration for many approaeisesiton the intelligent
use of memory in heuristics.

The main competitive advantage of TS with respect to altermbeuristics based
on local search like Simulated Annealing (SA) lies in thelligent use of the past
history of the search to influence its future steps. Becasadludes now a wide
variety of methods, we prefer the teprohibition-based searctvhen the investi-
gation is focussed onto the use of prohibition to encouragesification.

Let us assume that the feasible search space is the set of Isinags with
a given lengthL: 2 = {0,1}%. XU is the current configuration ard(X)) the
set of its neighbors, i.e., configurations that can be explan the following step
(Sec. 2.2 is mainly focused on neighborhoods). In prolubithased search some
of the neighbors arprohibited a subseNa(X®)) c N(X) contains theallowed
ones. The general way of generating the search trajectgiyes by:

XY — BEsSENEIGHBOR( Na(X(1))) 1)
NA(X(t+1)) _ ALLOW(N(X(t+1))aX(O)’ L ,X<t+l>) (2)

The set-valued function iLow selects a subset &f(X(+1)) in a manner that de-
pends on the entire search trajecty), ..., X 1),

By analogy with the concept @bstract data typén Computer Science [2], and
with the relatedobject-orientedsoftware engineering framework [49], it is useful
to separate the abstract concepts and operations of TS fedetailed implemen-
tation, i.e., realization with specific data structuresother wordspolicies (that
determine which trajectory is generated in the search spdw the balance of in-
tensification and diversification is, etc.) should be sefearfommechanismghat
determinehow a specific policy is realized. A first classification distimghes be-
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tweenstrict-TS which prohibits only the moves leading back to previousgited
configurations, antixed-TSwhich prohibits only the inverses of moves which have
been applied recently in the search, their recency beinggddccording to a pro-
hibition parameter, also called tabu tenure.

Let u~—* denote thenverseof a move, for example, ifs is changing the-th
bit of a binary string from 0 to 14~ changes the same bit from 1 to 0. A neigh-
bor is allowed if and only if it is obtained from the currentipioby applying a
move such that its inverse has not been used during thé& lastations. In detail,
if LASTUSED(u) is the last usage time of moye (LASTUSED(i) = —o at the
beginning):

Na(X®) = {X = po X s.t. LasTUSED(™Y) < (t—T)} (3)

If T changes with the iteration counter depending on the seaathss and in
this case the notation &, the general dynamical system that generates the search
trajectory comprises an additional evolution equationfét:

TO = ReacT(THY xO . x1) (4)
Na(X®) = {X = poX® s t. LasTUSED(uY) < (t—TW)} (5)
XD — BESENEIGHBOR(NA(XY)) (6)

Rules to determine the prohibition parameter by reactinth&érepetition of
previously-visited configurations have been proposed @ (2active-TSRTSfor
short). In addition, there are situations where the singéetive mechanism on
is not sufficient to avoid long cycles in the search trajgctord therefore a second
reaction is needed [26].

The prohibition parametef used in equation (3) is related to the amount of
diversification the largerT, the longer the distance that the search trajectory must
go before it is allowed to come back to a previously visitethpdn particular, the
following relationships between prohibition and divexsation are demonstrated
in [11] for a search space consisting of binary strings wislsio moves flipping
individual bits:

e The Hamming distanckl between a starting point and successive point along
the trajectory is strictly increasing fdr+ 1 steps.

H(XE4A0 XUy = At for At<T+1
e The minimum repetition interva® along the trajectory is(@ + 1).
XER — XU o R>2(T+1)

In general, because a larger prohibition value implies aentiarited choice of
moves, it makes sense to setto the smallest value that guarantees a sufficient
degree of diversification
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In reactive-Tg26] the prohibitionT is determined through feedback (i.eeac-
tive) mechanisms during the seardhis equal to one at the beginning (the inverse
of a given move is prohibited only at the next step), it insesaonly when there is
evidencehat diversification is needed, it decreases when this aceldisappears.
The evidence that diversification is needed is signaled byréipetition of previ-
ously visited configurations. This criterion needs to beegalized when the search
space dimension becomes very large, so that the exacttiepetf configurations
can become very rare even if the trajectory is confined. kdase, one can monitor
an appropriate distance measure from a given starting aoatign. An insufficient
growth if the distance as a function of the number of stepsestaken as evidence
of confinement, see for example [20].

A more radicalescapenechanism can be triggered when the basic prohibition
mechanism is not sufficient to guarantee diversificatiofi2@j the escape (a num-
ber of random steps) is triggered when too many configuratése repeated too
often. Further details about applications, implementasiod data structures can be
found in [14].

A reactive determination of th€ value can change the process of escaping from
a local minimum in a qualitative manner: one obtains an (ojstic) logarithmic
increase in thetrict-TSalgorithm, and a (pessimistic) increase that behaveshige t
square root of the number of iterations in the reactive ca4g [

Robust stochastic algorithms related to the previouslgrigsd deterministic
versions can be obtained in many ways. For example, pradmlitiles can be sub-
stituted withprobabilistic generation-acceptance rubegth large probability for al-
lowed moves, small for prohibited ones, see for examplgthbabilistic-TS[68].
Asymptotic results for TS can be obtained in probabilisti [b6]. In a different
proposal fobust-T$ the prohibition parameter is randomly changed between an
upper and a lower bound during the search [122].

If the neighborhood evaluation is expensive, the exhagisixaluation can be
substituted with a partiadtochastic samplingonly a partial list of candidates is
examined before choosing the best allowed neighbor.

Finally, other possibilities which are softer than protidsis exist. For example
the HSAT [67] variation of GSAT introduces a tie-breakingerinto GSAT: if more
moves produce the same (be&t), the preferred move is the one that has not been
applied for the longest span. HSAT can be seen as a “softiorecs Tabu Search:
while TS prohibits recently-applied moves, HSAT disco@sgecent moves if the
sameA f can be obtained with moves that have been “inactive” for géotime.

2.2 Reacting on the neighborhood

Local search based on perturbing a candidate solution istgpfiradigmatic case
where simple online adaptation and learning strategiebeapplied. LetZ” be the
search space& ) the current solution at iteration (“timet) N(X(1)) is the neigh-
borhood of poiniX(), obtained by applying a set of basic moyesp, ..., Uy to
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the current configuration:
N(X®) = {X € 2 such thatX = p;(XV),i=0,...,M}

Local search starts from an admissible configurati®® and builds asearch
trajectory X9 ... X1 The successor of the current point is a point in the neigh-
borhood with a lower value of the functiointo be minimized. If no neighbor has
this property, i.e., if the configuration is a local minimizéhe search stops.

Y — IMPROVING-NEIGHBOR( N(X!))) 7)
Y if f(Y) < f(X®
X(t+l) _ © ( ) ( ) (8)
X" otherwise (search stops)

IMPROVING-NEIGHBOR returns an improving element in the neighborhood. In a
simple case this is the element with the lowéstalue, but other possibilities exist,
as we will see in what follows.

Online learning strategies can be applied in two conteriscsion of the neigh-
bor or selection of the neighborhood. While these strasegjie part of the standard
bag of tools, they in fact can be seen as simple forms of @atdithe recent history
of evaluations.

When the neighborhood s fixed, one can modify the unrespestiategy which
considers all neighbors before selecting one of the besemfest-improvement
local search and obtain a very simple reactive strategy lik@ 5TM OVE. FIRST-
MoVE accepts the first improving neighbor if one is found beforarexing all
candidates. The simple adaptation is clear: the exact nuaflneighbors evaluated
before deciding the next move depends not only on the instimicon the particular
local properties in the configuration space around the ntipeint. On the average,
less neighbors will need to be evaluated at the beginningeo$éarch, when finding
an improving move is simple, more neighbors when the trajgajoes deeper and
deeper into a given local minimum attractor.

When the neighborhood is changed depending on the localgtmafion one
obtains for example the Variable Neighborhood Search (M¥3]) VNS considers
a a set of neighborhoodslefineda priori at the beginning of the search, and then
uses the most appropriate one during the search.

Variable Neighborhood Descent [74] (VND), see Fig. 1, ubesdefault neigh-
borhood first, and the ones with a higher number only if thedkheighborhood
fails (i.e., the current point is a local minimum ff), and only until an improving
move is identified, after which it reverts backta. When VND is coupled with
an ordering of the neighborhoods according togtrengthof the perturbation, one
realizes the principlase the minimum strength perturbation leading to an impiove
solution which is present also in more advanced RSO methods. Thédevason
of neighborhoods of increasing diameter (distance of itsers w.r.t. the starting
configuration) can be considered as a forndifersification A strong similarity
with the design principle of Reactive Tabu Search is preses later in this chap-
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1. function VariableNeighborhoodDescery; ..., N,...)

2. [ repeat until no improvement or max CPU time elapsed

3 k < 1 // index of the default neighborhood

4. while k < Kmax.

5. X' — BestNeighbor i (X)) // neighborhood exploration

6 if f(X')<f(X)

7 X« X" ; k+« 1/l success: back to default neighborhood
8 ese

9 k < k+ 1 // try with the following neighborhood

Fig. 1 The VND routine. Neighborhoods with higher numbers are iclamed only if the default
neighborhood fails and only until an improving move is ided. X is the current point.

ter, where diversification through prohibitions is acte@tvhen there is evidence of
entrapment in an attraction basin and gradually reducedwieze is evidence that
a new basin has been discovered.

An explicitly reactive-VNS is considered in [35] for the VR®/ problem (vehi-
cle routing problem with time windows), where a constructi@uristic is combined
with VND using first-improvement local search. Furthermdine objective function
used by the local search operators is modified to considevditeng time to escape
from a local minimum. A preliminary investigation about dfssedaptive neighbor-
hood ordering for VND is presented in [78]. The differentgtéorhoods are ranked
according to their observed benefits in the past.

Let’s also note some similarities between VNS and the atiaptaf the search
region in stochastic search technique for continuous opdition, see the discus-
sion later in this chapter. Neighborhood adaptation in th&tiouous case, see for
example the Affine Shaker algorithm in [25], is mainly corsel to speed-up con-
vergence to a local minimizer, not to jump to nearby valleys.

A related possibility to cause a more radical move when sngules are not
sufficient to escape from a local minimumitisrated local searcfILS). ILS is based
on building a sequence of locally optimal solutions by pegitug the current local
minimum and applying local search after starting from thedified solution. The
work about large-step Markov chain of [96, 94, 95, 126] corgaery interesting
results coupled with a clear description of the principles.

In VNS minimal perturbations maintain the trajectory in starting attraction
basin, while excessive ones bring the method closer to arasdmpling, therefore
loosing the boost which can be obtained by the problem stracproperties. A
possible solution consists of perturbing by a short randadik wf a length which is
adaptedby statistically monitoring the progress in the search. Mgnand reactive
learning can be used in a way similar to that of [20] to adaptstirengthof the
perturbation to the local characteristics in the neighbothof the current solution
for the considered instance. Creative perturbations cavbbened by temporarily
changing the objective function with penalties so that tilngent local minimum is
displaced, like in [31, 45], see also the later descriptibowd reactively changing
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the objective function, or bfixingsome configuration variables and optimizing sub-
parts of the problem [92].

2.3 Reacting on the annealing schedule

A widely popular stochastic local search technique is tineuated Annealing (SA)
method [88] based on the theory of Markov processes. Thectaly is built in a
randomized manner: the successor of the current point sechgtochastically, with
a probability that depends only on the difference imalue w.r.t. the current point
and not on the previous history.

Y — NEIGHBOR( N(X1))
Y if f(Y) < f(X®)
XED Ly i f(Y) > £(XO), with probabilityp = e~ (FV)=fX))/T (9)
XO if £(Y) > f(X©), with probability (1 — p).

SA introduces demperaturegparametei which determines the probability that
worsening moves are accepted: a largeimplies that more worsening moves
tend to be accepted, and therefore a larger diversificattoars. An analogy with
energy-minimization principles in physics is present, tnsl explains the “temper-
ature term”, as well as the term “energy” to refer to the fiorct.

If the local configuration is close to a local minimizer ane temperature is
already very small in comparison to the upward jump whichtbase executed to
escape from the attractor, the system wilentuallyescape, but an enormous num-
ber of iterations can be spent around the attractor. The mgdess property (current
move depending only on the current state, not on the previmisry) makes SA
look like a dumb animal indeed. It is intuitive that a betterfprmance can be
obtained by using memory, by self-analyzing the evolutibthe search, by devel-
oping simple models and by activating more direstapestrategies aiming at a
better usage of the computational resources devoted tmization.

Even if a vanilla version of a cooling schedule for SA is adolfstarting temper-
atureTsiar, geometric cooling schedule;; = a T, with a < 1, final temperature
Tend), @ sensible choice has to be made for the three involvedpeaisTsiart, o, and
Tend The work [130] suggests to estimate the distributiori @alues. The standard
deviation of the energy distribution defines the maximumgerature scale, while
the minimum change in energy defines the minimum-temperatale. These tem-
perature scales tell us where to begin and end an annealirdse.

The analogy with physics is further pursued in [89], wheraaapts related to
phase transitionand specific heataire used. The idea is that a phase transition
related to solving a sub-part of a problem. After a phasesttiam corresponding to

is
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the big reconfiguration occurs, finer details in the solutiawe to be fixed, and this
requires a slower decrease of the temperature.

When the parametefigia;; anda are fixeda priori, the useful span of CPU time
is practically limited. After the initial period the temure will be so low that
the systenfreezesand, with large probability, no tentative moves will be guteel
anymore in the remaining CPU time of the run. For a new ingagoessing ap-
propriate parameter values is difficult. Furthermore, imyneases one would like
to use aranytime algorithmso that longer allocated CPU times are related to pos-
sibly better and better values until the user decides ta $top-monotonic cooling
schedulesre a reactive solution to this difficulty, see [46, 105, 1jeTwork [46]
suggests to reset the temperature once and for all at a cotstaperature high
enough to escape local minima but also low enough to visinttfer example, at
the temperaturé,,ng when the best heuristic solution is found in a preliminary SA
simulation.

A non-monotonic schedule aims at: exploiting an attractiasin rapidly by de-
creasing the temperature so that the system can settle dogento the local mini-
mizer,increasing the temperatute diversify the solution and visit other attraction
basins, decreasing again after reaching a different basamimplementation details
have to do with determining aantrapmensituation, for example from the fact that
no tentative move is accepted after a sequéngeof tentative changes, and deter-
mining the detailed temperature decrease-increase ek a function of events
occurring during the search [105, 1]. Enhanced versiorsweva learning process
to choose a proper value of the heating factor dependingegytstem state. Let's
note that similar “strategic oscillations” have been pregmbin tabu search, in par-
ticular in the reactive tabu search of [26], see later in thigpter, and in variable
neighborhood search.

Modifications departing from the exponential acceptande and other adap-
tive stochastic local search methods for combinatoriahapation are considered
in [99, 100]. The authors appropriately note that the opitioh@ices of algorithm
parameters depend not only on the problem but also on thiggartinstance and
that a proof of convergence to a globally optimum is not arsglpoint for a spe-
cific heuristic: in fact a simple random sampling, or evenadtive enumeration (if
the set of configurations is finite) will eventually find thetiopal solution, although
they are not the best algorithms to suggest. A simple adafgchnique is suggested
in [100]: a perturbation leading to a worsening solutiondsepted if and only if a
fixed number of trials could not find an improving perturbatidhe temperature pa-
rameter is eliminated. The positive performance of the oetth the area of design
automation suggests that the success of SA is “due largély &mceptance of bad
perturbations to escape from local minima rather than toesmystical connection
between combinatorial problems and the annealing of métals

“Cybernetic” optimization is proposed in [60] as a way to psebabilistic in-
formation for feedback during a run of SA. The idea is to cdasimore runs of SA
running in parallel and to aim atensifying the searctby lowering the tempera-
ture parameter) when there is evidence that the searchveiging to the optimum
value.
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The application of SA to continuous optimization (optintiza of functions de-
fined on real variables) is pioneered by [48]. The basic neibhdo generate a new
point with a random step along a directigg to evaluate the function and to ac-
cept the move with the exponential acceptance rule. Onesymler the different
directionse, during successive steps of the algorithm. A first criticadick has to
do with the range of the random step along the chosen direcfidixed choice
obviously may be very inefficient: this opens a first pos#ipfbr learningfrom the
local f surface. In particular a new trial poixtis obtained from the current poirt
as:

X' = X+ RAND(—1,1)Vnen

whereRAND(—1,1) returns a random number uniformly distributed between €l an
1, &, is the unit-length vector along directidnm andvy, is the step-range parameter,
one for each dimensidm collected into the vector. Thev, value is adapted during
the search to maintain the numberamiceptednoves at about one-half of the total
number of tried moves. Although the implementation is aye@active and based
on memory, the authors encourage more work so that a “goodtonioig of the
minimization process” can deliver precious feedback alsomte crucial internal
parameters of the algorithm.

In Adaptive Simulated Annealing (ASA), also known as verstfsimulated re-
annealing [82], the parameters that control the tempezatwling schedule and the
random step selection are automatically adjusted acogtdimlgorithm progress.
If the state is represented as a point in a box and the moves@&hcloud around
it, the temperature and the step size are adjusted so thaf tilke search space
is sampled at a coarse resolution in the early stages, wiglstate is directed to
promising areas in the later stages.

A reactive determination of parameters in an advanced sit®dilannealing ap-
plication for protein folding is presented in [75].

2.4 Reacting on the objective function

In the above methods, the objective functibmemains the guiding source of in-
formation to select the next move. Reactive diversificatio@ncourage exploration
of areas which are distant from a locally optimal configunathas been considered
though an adaptive selection of the neighborhood or of tighber based on the lo-
cal situation and on the past history of the search processm direct way to force
diversification is to directly prohibit configurations or w&s to create a pressure to
reach adequate distances from a starting point.

This part considers a different way to achieve similar rissbly reactively chang-
ing the function guiding the local search. For example, th@#avisiting a local min-
imum may cause a local increase of the evaluation functiturevso that the point
becomes less and less appealing, until eventually thectoajeis gently pushed to
other areas. Of course, the real objective function valndglze corresponding con-
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figurations are saved into memory before applying the madifia process. The
physics analogy is that of pushing a ball out of a valley bygpessively raising the
bottom of the valley.

A relevant problem for which objective function modificat®have been ex-
tensively used is maximum satisfiability (MAX-SAT): the mpconsists of logic
variables — with false and true values — and the objective isatisfy the maxi-
mum number of clauses (a clause is the logical OR of liteealgeral is a variable
or its negation). The decision version is called SAT, onedess for a variable
assignment, if any exists, which makes a formula true.

The influential algorithm GSAT [117] is based on local seaxith the standard
basic moves flipping the individual variables (from falsetrioe andvice versa.
Different noise strategies to escape from locally optinmaifigurations are added
to GSAT in [115, 116]. In particular, the GSAT-with-walk @ligthm introduces ran-
dom walk moves with a certain probability. A prototypicadéyation function mod-
ification algorithm is the breakout method proposed in [@8}ie related constraint
satisfaction problem. The cost is measured as the sum ofeights associated to
the violated constraints. Each weight is one at the begmraha local minimum
the weight of each nogood is increased by one until one esdape the given
local minimum (a breakout occurs). Clause-weighting hanh@oposed in [114]
for GSAT. A positive weight is associated to each clause terdgne how often
the clause should be counted when determining which variablip. The weights
are dynamically modified during problem solving and the gate effect is that
of “filling in” local optima while the search proceeds. Clauseighting and the
breakout technique can be considered as “reactive” teaksigvhere a repulsion
from a given local optimum is generated in order to inducesmape from a given
attraction basin.

New clause-weighing parameters are introduced and therefw possibilities
for tuning the parameters based on feedback from prelimisearch results. The
algorithm in [113] suggests to use weights to encourage pooeity on satisfy-
ing the “most difficult” clauses. One aims keiarning how difficult a clause is to
satisfy These hard clauses are identified as the ones which remsatisfied after
a try of local search descent followed by plateau searchir Thedght is increased
so that future runs will give them more priority when pickiagnove. More algo-
rithms based on the same weighting principle are proposg®ir64], where clause
weights are updated after each flip: the reaction from thatisied clauses is now
immediate as one does not wait until the end of a try (weigl®8AT or WGSAT).
If weights are only increased, after some time their sizeobess large and their
relative magnitude will reflect the overall statistics o tBAT instance, more than
the local characteristics of the portion of the search spaduere the current con-
figuration lies. To combat this problem, two techniques aoppsed in [64], either
reducingthe clause weight when a clause is satisfied, or storing thghivacre-
ments which took place recently, which is obtained by a wisigicay scheme (each
weight is reduced by a factgrbefore updating it). Depending on the size of the in-
crements and decrements, one achieves “continuously wiegkiemcentives not to
flip a variable” instead of the strict prohibitions of TabuaBeh. The second scheme
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takes therecency of movemto account, the implementation is through a weight
decay scheme updating so that each weight is reduced befmgséle increment
by o if the clause is not satisfied:

W «— (0Wi—|—5

where one introduces a decay rgtand a “learning rated. A faster decay (lowep
value) will limit the temporal extension of the context antpily a faster forgetting
of old information. A critique of somevarping effects that a clause-weighting dy-
namic local search can create on the fitness surface is piag&@3]: in particular
let's note that the fitness surface is changed in a global \itay encountering a
local minimum. Points which are very far from the local minim, but which share
some of the unsatisfied clauses, will also see their valuasged.

A more recent proposal of a dynamic local search (DLS) for $Ain [124].
The authors start from the Exponentiated Sub-Gradient jES@orithm [112],
which alternates search phases and weight updates, andpleveheme with low
time complexity of its search steps: Scaling and Probdigildmoothing (SAPS).
Weights of satisfied clauses are multiplied by, while weights of unsatisfied
clauses are multiplied bgunsas, then all weights are smoothed towards their mean
W w—wp—+(1—p)w. A reactive versiorof SAPS (RSAPS) is then introduced
that adaptively tunes one of the algorithm’s important peeters.

A similar approach of dynamically modifying the objectiventtion has been
proposed with the term of Guided Local Search (GLS) [127] I@8other appli-
cations. GLS aims at enabling intelligent search schenssttploit problem- and
search-related information to guide a local search algoritPenalties depending
on solution features are introduced and dynamically mdaipd to distribute the
search effort over the regions of a search space. A penatiyuiation for TSP in-
cluding memory-based trap-avoidance strategies is peapws[129]. One of the
strategies avoids visiting points that are close to poirdited before, a generaliza-
tion of the previously describedT®ICT-TS strategy. A recent algorithm with an
adaptive clause weight redistributiasmpresented in [83], it adopts resolution-based
preprocessing and reactive adaptation of the total amdumtight to the degree of
stagnation of the search.

Let us note that the use of a dynamically modified (learned)uation function
is related to the machine learning techniqueeshforcement learningRL). Early
applications of RL in the area of local search is presentd@4n 33]. Some rein-
forcement learning approaches for optimization are alsougised in [8]. Recent
work includes [15], on-the-fly parameter tuning for evadutary algorithms in [55],
and the presentation in [14].
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3 Applications of Reactive Search Optimization

It must be noted that Reactive Search Optimization is nogal rlgorithm but

a general framework: specific algorithms have been intreddor unconstrained
and constrained tasks, with different stochastic mechaand rules for selecting
neighbors. As it usually happens in heuristics, the moreip&nowledge about a
problem is used, the better the results. Nonetheless, ibftas the case that sim-
ple RSO versions realized with very limited effort could dogte the performance
of more complex schemes because of their simple embedddbdele loop, and
without intensive parameter and algorithm tuning. A loegst goal of RSO is the
progressive shift of the learning capabilities from theoaignm user to the algorithm
itself, through machine learning techniques.

The RSO framework and related algorithms and tools have aerdrare being
applied to a growing number of “classical” discrete optiatian problems, continu-
ous optimization tasks, and real-world problems arisingiotely different contexts.
The Web, see for example Google scholar, lists thousandtatibos to the seminal
papers, the following list is a selection of some appliaatioe are aware of. We are
always happy to hear from users and developers intereste& principles and
applications.

In the following we summarize some applications in “clagBicombinatorial
tasks in Section 3.1, where by classical we mean abstractitiais of problems
which have been extensively studied in the Computer SciandeOperations Re-
search community.

Then we present applications in the area of neural netwar&ection 3.2, where
RSO has been used to solve the optimization problems relat@dchine learning.
Let’s note that the synergy between optimization and mackaarning is explored
in the opposite direction in this case, i.e., of using optition to solve machine
learning tasks.

Then we discuss versions of RSO for continuous optimiza@sRks in Section
3.3.

Finally, in Section 3.4, we present some applications tdi@ms which are
closer to the real application areas. These problems arewbe related to their
abstract and clean definitions but usually contains moraildeand require more
competence in the specific area to make substantial progress

3.1 Classic combinatorial tasks

The seminal paper about RSO for Tabu Search (Reactive Tamel§epresented
preliminary experimental results on the 0-1 Knapsack Rrobhnd on the Quadratic
Assignment Problem [26]. A comparison with Simulated Adimgeon QAP tasks
is contained in [27]. An early experimental comparison oa&&e Search Opti-
mization with alternative heuristics (Repeated Local MiaiSearch, Simulated An-
nealing, Genetic Algorithms and Mean Field Neural Netwpikgresented in [28].
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An application of a self-controlling software approach teaRtive Tabu Search is
presented in [57] with results on the QAP problem.

A reactive local search-based algorithm (adaptive memeaych) for the 01-
Multidemand Multidimensional knapsack probleny {o0MDMKP) is proposed in
[5]. The 0/1-MDMKP represents a large class of important real-lifebpeas, in-
cluding portfolio selection, capital budgeting, and obioos and semi-obnoxious
facility location problems. A different application is caidered in [76] for the dis-
junctively constrained knapsack problem (DCKP), a vari@rthe standard knap-
sack problem with special disjunctive constraints. A disfive constraint is a cou-
ple of items for which only one item is packed.

A reactive tabu search algorithm for Minimum Labeling SpagriTree is con-
sidered in [39, 40], together with other meta-heuristidse problem is as follows:
Given a graph G with a color (label) assigned to each edge aies Ifor a span-
ning tree of G with the minimum number of different colors.eThroblem has
several applications in telecommunication networks tateoetworks, multi-modal
transportation networks, among others, where one aimssatieg connectivity by
means of homogeneous connections.

The graph partitioning problem has been a test case for adddocal search
heuristics starting at least from the seminal Kernighan landoaper [84], which
proposes a variable-depth schemes. This is is fact a simplehition-based (tabu)
scheme where swaps of nodes among the two sets of the pestdi@ applied,
and the just swapped nodes are kept fixed during a sequeneatafite moves
in search of an improving chain. Greedy, Prohibition-based Reactive Search
Optimization Heuristics for Graph Partitioning are propdsind compared in [11],
Multilevel Reactive Tabu Search techniques, based on gindweoarse versions of
very large graphs are considered for Graph Partitionind @j. [

A reactive tabu search version for the vehicle routing peoblvith time windows
is designed in [44], while a version of the vehicle routinglgem with back-hauls
is considered in[50] and [104]. A Reactive Variable Neigtitumd Search for the
Vehicle-Routing Problem with Time Windows is proposed iB][3Vehicle routing
with soft time windows and Erlang travel times is studiedi09].

An RSO scheme is applied to the maximum clique problem infggap [19]
[23]. A clique is a subset of nodes which are mutually intercected, the prob-
lem is related to identifying densely interconnected comities and, in general, to
clustering issues. A relaxed quasi-clique version of tiebf@m where some edged
may be missing is addressed in [38].

The work in [132] designs Reactive Prohibition-Based Antddyg Optimiza-
tion (RPACO): A New Parallel Architecture for Constrainetiqge Sub-Graphs.
This paper introduces a new algorithm that combines thenstigic capabilities
of Ant Colony Optimization (ACO) with local search heurestito solve the maxi-
mum and maximum-weighted clique problem. The introduceati®ee Prohibition-
based Ant Colony Optimization (RPACOMCP) complements thtelligent ant
colony search with a prohibition-based diversificatiorhtéque, where the amount
of diversification is determined in an automated way throaghedback (history-
sensitive) scheme.
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Maximum satisfiability is considered in [21], [20] [97], rave SAPS (scaling
and probabilistic smoothing) [124]. Constraint satisfactin [102]. Reactive local
search techniques for the maximuatonjunctive constraint satisfaction problem
(MAX-k-CCSP) in [22]. A worst-case analysis of tabu search as difumof the
tabu list length for the MAX-TWO-SAT problem is presented%7], with applica-
tions also to a reactive determination of the prohibition.

In[111] the authors address the problem of computing a gsapitarity measure
which is generic in the sense that other well known graphlanity measures can
be viewed as special cases of it. They propose and compa@dgenthms: an Ant
Colony Optimization based algorithm and a Reactive Seaptmization and show
that they obtain complementary results.

A classification of methods to manage the prohibition pe€i@bu tenure) in the
literature is presented in [54] together with a new reacli@bu tenure adaptation
mechanism. The generic method is tested on the k-colorioigigm.

A Reactive Tabu Search algorithm with variable clusteriogthe Unicost Set
Covering Problem is proposed in [86]. Unicost SCPs ariseaplytheory when one
must select a minimum covering of edges by nodes or nodesduesl. In addition,
in many practical applications (crew scheduling, politiedlistricting, conservation
biology, etc.) the relative variation in the weights may b&#l enough to warrant a
unicost model.

3.2 Neural networksand VLSl systemswith learning capabilities

While derivative-based methods for training from examgiase been used with
success in many contexts (error back-propagation is angheamthe field of neu-
ral networks), they are applicable only to differentiabéefprmance functions and
are not always appropriate in the presence of local minimadtition, the calcula-
tion of derivatives is expensive and error-prone, esplgdiadpecial-purpose VLSI
hardware is used. A radically different approach is use®$#j:[the task is trans-
formed into a combinatorial optimization problem (the gsiof the search space
are binary strings), and solved with the Reactive Searcim@igation algorithm. To
speed up the neighborhood evaluation phase a stochastidisgrof the neighbor-
hood is adopted and a “smart” iterative scheme is used to ataripe changes in
the performance function caused by changing a single waRfs® escapes rapidly
from local minima, it is applicable to non-differentiablacheven discontinuous
functions and it is very robust with respect to the choicéhefinitial configuration.
In addition, by fine-tuning the number of bits for each parsenene can decrease
the size of the search space, increase the expected geatoaliand realize cost-
effective VLSI.

Reactive Tabu Search in Semi-supervised Classificatiomapgsed in [133].
With a linear kernel their RTS implementation can effedgiviind optimal global
solutions for the primal Mixed Integer Programming Trangte Support Vector
Machine (MIP-TSVM) with relatively large problem dimengio
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In contrast to the exhaustive design of systems for patragnition, control,
and vector quantization, an appealing possibility coasi$tspecifying a general
architecture, whose parameters are then tuned throughiMatlearning (ML).
ML becomes a combinatorial task if the parameters assunsreetké set of values:
the Reactive Tabu Search (RTS) algorithm permits the tigif these systems
with low number of bits per weight, low computational acayrano local minima
“trapping”, and limited sensitivity to the initial condiins [17, 16].

Special-purpose VLSI modules have been developed to beagsgmmponents of
fully autonomous massively-parallel systems for realetimdaptive applications. In
contrast to many “emulation” approaches, the developed\éb&pletely reflects
the combinatorial structure used in the learning algorghm

Applications considered are in the area of pattern recmyn{Optical Character
Recognition), event triggering in High Energy Physics [@ntrol of non-linear
systems [28], compression of EEG signals [24]. The first pobdf a joint project
between University of Trento, INFN and IRST was the TOTEMpcli6, 18], and
more general special-purpose VLSI realizations are desdrin [4, 3]. A parallel
neurochip for neural networks implementing the ReactivieuT&earch algorithm
and application case studies are presented in [52]. An FPgeimentation of the
TOTEM chip is presented in [6].

3.3 Continuous optimization

A simple benchmark on a function with many suboptimal localima is consid-
ered in [29], where a straightforward discretization of tfenain is used. A novel
algorithm for the global optimization of functions (C-RT8) presented in [30],
in which a combinatorial optimization method cooperatethvai stochastic local
minimizer. The combinatorial optimization component,dzh®n Reactive Search
Optimization, locates the most promising boxes, whereistapoints for the local
minimizer are generated. In order to cover a wide spectrupos$ible applications
with no user intervention, the method is designed with adepbhechanisms: in ad-
dition to the reactive adaptation of the prohibition perjdtle box size is adapted
to the local structure of the function to be optimized ( boaes larger in “flat”
regions, smaller in regions with a “rough” structure). Amphgation of intelligent
prohibition-based strategies to continuous optimizaisqoresented in [43].

A Reactive Affine Shaker method for continuous optimizaimetudied in [36,
37]. The work presents an adaptive stochastic search tigofor the optimiza-
tion of functions of continuous variables where the only difyesis is the pointwise
computability of the function. The main design criteriomststs of the adaptation
of a search region by an affine transformation which takes &tcount the local
knowledge derived from trial points generated with unifggrobability. Heuristic
adaptation of the step size and direction allows the langessible movement per
function evaluation. The experimental results show thatgioposed technique is,
in spite of its simplicity, a promising building block to csider for the develop-
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ment of more complex optimization algorithms, particyjan those cases where
the objective function evaluation is expensive.

A Gregarious Particle Swarm Optimizer (GPSO) is proposdd®8]. The par-
ticles (the different local searchers) adopt a reactiverdgination of the step size,
based on feedback from the last iterations. This is in ceht@the basic parti-
cle swarm algorithm, in which no feedback is used for the-galfng of algorithm
parameters. The novel scheme presented, when tested ortanteak for contin-
uous optimization, besides generally improving the aver@gtimal values found,
reduces the computation effort.

3.4 Real-world applications

A real-world application in the area of electric power dimiition: service restora-
tion in distribution systems is studied in [125], fast opirsetting for voltage con-
trol equipment considering interconnection of distriltligenerators is proposed
in [103], Service Restoration in Distribution Systems i][@listribution load trans-
fer operation in [65].

A continuation of the work in [44] is proposed in [108] to aidthe coordination
and synchronization of the production and delivery of mpitbduct newspapers to
bulk delivery locations. The problem is modeled as an opéricie routing prob-
lem with time windows and zoning constraints. The methogyplis applied to the
newspaper production and distribution problem in a majaropelitan area.

In the field of industrial production planning, [58] studeggplications of modern
heuristic search methods to pattern sequencing probléexibfe job-shop schedul-
ing is studied in [42] and [41]. The plant location problensiadied in [53]. The
work [59] is dedicated to solving the continuous flow-shopestuling problem
Adaptive self-tuning neurocontrol is considered in [LQFe objective is to con-
struct an adaptive control scheme for unknown time-depsinumnlinear plants.

Various applications of RSO focussed on problems arisinthendesign and
management of telecommunication networks. RSO for trafftoming in optical
WDM networks is considered in [12]. Optimal conformance setection is studied
in [51]. Conformance testing is used to increase the reiighuf telecommunica-
tion applications. Locating Hidden Groups in Communicafitetworks Using Hid-
den Markov Models is addressed in [93]. A communication ekvis a collection
of social groups that communicate via an underlying comeation medium. In
such a network, a hidden group may try to camouflage its conwations amongst
the typical communications of the network. The task of iasieg internet capac-
ity is considered in [62]. The multiple-choice multi-dingonal knapsack problem
(MMKP) with applications to service level agreements andtimedia distribu-
tion is studied in [76] and [77]. They consider the model dbedtion resources
and the dynamic adaptation of system of resources for medtianmulti-sessions.
High quality solutions, reaching the optimal/best for sal/estances are obtained
through a reactive local search scheme. In the area of wg@led cellular commu-
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nication networks, the work in [13] considers the Optimar#éss Access Point
Placement for Location-Dependent Services, and the wop&lihproposes a tabu
search heuristic for the dimensioning of 3G multi-serviegnvorks.

A heuristic approach based on a hybrid operation of reataive search (RTS)
and adaptive memory programming (AMP) is proposed in [9Hdwe the vehicle
routing problem with backhauls (VRPB). One is given a setustemers, some of
which are linehauls (delivery points) and some are bacleh@allection points), a
set of homogeneous vehicles and a depot. A distinguishmtgife of this model is
that all backhaul customers must be visited after all linglcastomers are served
on each route. RTS is used with an escape mechanism whiclpuhateis different
neighborhood schemes in order to continuously balancasifteation and diversi-
fication during the search process. The adaptive memortegirdakes the search
back to the unexplored regions of the search space by nrimges set of elite so-
lutions and using them strategically with the RTS. The arglod [101] address the
pickup and delivery problem with time windows using reaetigbu search.

Real-time dispatch of trams in storage yards is studied3i].1

In the military sector, simple versions of Reactive Tabur8eare considered
in [87] in a comparison of techniques dedicated to desigaimginmanned aerial
vehicle (UAV) routing system. Hierarchical Tabu Programaqis used in [7] for
Finding the Underwater Vehicle Trajectories. Aerial recaissance simulations is
the topic of [110]. The authors of [9] use an adaptive tabuckeapproach for solv-
ing the aerial fleet refueling problem.

In the automotive sector, RSO is used in [71] for improvingicke safety. In de-
tail, a mixed reactive tabu search method is used to optithizeesign of a vehicle
B-pillar subjected to roof crush.

Reactive Tabu Search and sensor selection in active stalecoustic control
problems is considered in [85].

Visual representation of data through clustering is casrgid in [47].

The solution of the engineering roof truss design problemtissussed in [70]
An application of reactive tabu search for designing b&gdetylinders and domes
of generalized elliptical profile is studied in [32]. The ieders and domes are opti-
mized for their buckling resistance when loaded by statieral pressure by using
a structural analysis tool.

A Reactive Stochastic Local Search Algorithms is used tvestthe Genomic
Median Problem in [90]. The genomic median problem is annojzttion problem
inspired by a biological issue: it aims at finding the chrooms organization of
the common ancestor to multiple living species. It is foratedl as the search for a
genome that minimizes a rearrangement distance measunmggagi@n genomes.
An adaptive bin framework search method for a beta-shedeipréilomopolymer
model is used in [120], protein folding is studied in [1189).1Additional applica-
tions in bio-informatics include for example [120], whictoposes an adaptive bin
framework search method for a beta-sheet protein homopalynodel. A novel
approach is studied based on the use of a bin framework fqtiadby storing and
retrieving promising locally optimal solutions. Each bwldls a set of conformations
within a certain energy range and an one uses an adaptivegstrior restarting a
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given search process with a conformation retrieved froredfi®ns when the search
stagnates. An adaptive mechanisms chooses which conformaahould be stored,
based on the set of conformations already stored in memndyp&ses choices
when retrieving conformations from memory in order to owene search stagna-
tion. The energy and diversity thresholds for each bin amadyically modified
during the search process.

An adaptive meta-search method that alternates betweedistioct modes of
the search process at different levels is proposed in [1d9protein folding. The
high level process ensures that unexplored promising patte search landscape
are visited and the low-level search provides the thorougloeation of local neigh-
borhoods. Multiple search processes are used in an irgetligay.
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